Skip to main content

Advertisement

Log in

Determination of ricin intoxication in biological samples by monitoring depurinated 28S rRNA in a unique reverse transcription-ligase-polymerase chain reaction assay

  • Original Article
  • Published:
Forensic Toxicology Aims and scope Submit manuscript

Abstract

Purpose

Type II ribosome inactivating proteins (RIPs II) such as ricin, exert their cytotoxic effect by depurinating a specific adenosine within the 28S rRNA, which in turn leads to inhibition of protein synthesis and cell death. Therapeutic intervention in case of exposure to RIP II toxins, requires the development of a specific and sensitive method for the detection of the active toxin in biological samples. Here, we describe the development of a highly sensitive assay for the detection of ricin, based on the biological activity of the toxin.

Methods

We exploited the fact that, when ricin-induced depurinated 28S rRNA serves as a template in a  reverse transcription reaction, cDNA elongation is prematurely terminated at the depurinated site, leading to the formation of truncated cDNA molecules. To allow specific amplification of the truncated cDNA, an unrelated synthetic single strand DNA molecule was appended to its 3′ end. This chimeric ligation product was then amplified in a quantitative real-time polymerase chain-reaction, utilizing a pair of primers, one complementing its truncated cDNA sequence, and the other complementing its synthetic single strand DNA sequence.

Results

The unique method described here detected ricin at concentrations as low as 5 pg/mL within 5 h, allowed toxin identification in biological samples from pulmonary-intoxicated mice and pigs even when collected at late time-points (30–72 h) and was also found to be highly effective in detecting ricin after intraperitoneal exposure.

Conclusions

The method developed in this study is well-suited for detecting catalytically-active ricin in biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262:5908–5912

    CAS  PubMed  Google Scholar 

  2. Amukele TK, Rodat S, Schramm VL (2005) Ricin A-chain activity on stem-loop and unstructured DNA substrates. Biochemistry 44:4416–4425

    Article  CAS  PubMed  Google Scholar 

  3. Sperti S, Montanaro L, Mattioli A, Testoni G (1975) Relationship between elongation factor 1 and elongation factor 2 dependent guanosine triphosphate activities of ribosomes. Biochem J 148:447–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simmons BM, Stahl PD, Russell JH (1986) Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. Multiple intracellular pathways for a chain translocation. J Biol Chem 261:7912–7920

    CAS  PubMed  Google Scholar 

  5. Sobel J, Khan AS, Swerdlow DL (2002) Threat of a biological terrorist attack on the US food supply: the CDC prespective. Lancet 359:874–880

    Article  PubMed  Google Scholar 

  6. Knight B (1979) Ricin—a potent homicidal poison. Br Med J 3:350–351

    Google Scholar 

  7. Crampton R, Gall D (1980) Georgi Markov—death in a pellet. Med Leg J 48:51–62

    Article  Google Scholar 

  8. Johnson RC, Lemire SW, Woolfitt AR, Ospina M, Preston KP, Olson CT, Barr JR (2005) Quantification of ricinine in rat and human urine: a biomarker for ricin exposure. J Anal Toxicol 29:149–155

    Article  CAS  PubMed  Google Scholar 

  9. Mori K, Matsumoto K, Gans H (1973) On the in vivo clearance and detoxification of endotoxin by lung and liver. Ann Surg 177:159–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hastings RH, Folkesson HG, Matthay MA (2003) Mechanisms of alveolar protein clearance in the intact lung. Am J Physiol Lung Cell Mol Physiol 286:679–689

    Article  Google Scholar 

  11. Benson JM, Gomez AP, Wolf ML, Tibbetts BM, March TH (2011) The acute toxicity, tissue distribution, and histopathology of inhaled ricin in Sprague Dawley rats and BALB/c mice. Inhal Toxicol 23:247–256

    Article  CAS  PubMed  Google Scholar 

  12. Bozza WP, Tolleson WH, Rivera-Rosado LA, Zhang B (2015) Ricin detection: tracking active toxin. Biotechnol Adv 33:117–123

    Article  CAS  PubMed  Google Scholar 

  13. Koza N, Shibata T, Mochida K (1980) Enzyme-linked immunoassay of ricin. Toxicon 18:611–618

    Article  Google Scholar 

  14. Narang U, Anderson GP, Ligler FS, Burans J (1997) Fiber optic-based biosensor for ricin. Biosens Bioelectron 12:937–945

    Article  CAS  PubMed  Google Scholar 

  15. Shyu RH, Shyu HF, Liu HW, Tang SS (2002) Colloidal gold-based immunochromatographyic assay for detection of ricin. Toxicon 40:255–258

    Article  CAS  PubMed  Google Scholar 

  16. Poli MA, Rivera VR, Hewetson JF, Merrill GA (1994) Detection of ricin by colorimetric and chemiluminescence ELISA. Toxicon 32:1371–1377

    Article  CAS  PubMed  Google Scholar 

  17. Weingart OG, Gao H, Crevoisier F, Heitger F, Avondet MA, Sigrist H (2000) A bioanalytical platform for simultaneous detection and quantification of biological toxins. Sensors 12:2324–2339

    Article  Google Scholar 

  18. Lamont EA, He LL, Warriner K, Labuza TP, Sreevatsan S (2011) A single DNA aptamer functions as a biosensor for ricin. Analyst 136:3884–3895

    Article  CAS  PubMed  Google Scholar 

  19. Tran H, Leong C, Loke WK, Dogovski C, Liu CQ (2008) Surface plasmon resonance detection of ricin and horticultural ricin variants in environmental samples. Toxicon 52:582–588

    Article  CAS  PubMed  Google Scholar 

  20. Feltis BN, Sexton BA, Glenn FL, Best MJ, Wilkins M, Davis TJ (2008) A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron 23:1131–1136

    Article  CAS  PubMed  Google Scholar 

  21. Nagatsuka T, Uzawa H, Sato K, Kondo S, Izumi M, Yokoyama K, Ohsawa I, Sato Y, Neri P, Mori H, Nishida Y, Saito M, Tamiya E (2013) Localized surface plasmon resonance detection of biological toxins using cell surface oligosaccharides on glyco chips. ACS Appl Mater Interfaces 5:4173–4180

    Article  CAS  PubMed  Google Scholar 

  22. Uzawa H, Ohga K, Shinozaki Y, Ohsawa I, Nagatsuka T, Seto Y, Nishida Y (2008) A novel sugar-probe biosensor for the deadly plant proteinous toxin, ricin. Biosens Bioelectron 24:923–927

    Article  CAS  Google Scholar 

  23. Anderson GP, Glaven RH, Algar WR, Susumu K, Stewart MH, Medintz IL, Goldman ER (2013) Single domain antibody-quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Anal Chim Acta 786:132–138

    Article  CAS  PubMed  Google Scholar 

  24. Liu HZ, Tang JJ, Ma XX, Guo L, Xie JW, Wang YX (2011) Galactose-functionalized magnetic iron-oxide nanoparticles for enrichment and detection of ricin toxin. Anal Sci 27:19–24

    Article  PubMed  Google Scholar 

  25. He X, McMahon S, McKeon TA, Brandon DL (2010) Development of a novel immune-PCR assay for detection of ricin in ground beef, liquid chicken egg, and milk. J Food Prot 73:695–700

    Article  CAS  PubMed  Google Scholar 

  26. Kanamori-Kataoka M, Kato H, Uzawa H, Ohta S, Takei Y, Furuno M, Seto Y (2011) Determination of ricin by nano liquid chromatography/mass spectrometry after extraction using lactose-immobilized monolithic silica spin column. J Mass Spectrom 46:821–829

    Article  CAS  PubMed  Google Scholar 

  27. Duriez E, Fenaille F, Tabet JC, Lamourette P, Hilaire D, Becher F, Ezan E (2008) Detection of ricin in complex samples by immunocapture and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Proteome Res 7:4154–4163

    Article  CAS  PubMed  Google Scholar 

  28. Harley SM, Beevers H (1982) Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc Natl Acad Sci USA 79:5935–5938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. May MJ, Hartley MR, Roberts LM, Kreig PA, Osborn RW, Lord JM (1989) Ribosome inactivation by ricin A chain: a sensitive method to assess the activity of wild type and mutant polypeptides. EMBO J 8:301–308

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Olsnes S, Fernandez-Puentes C, Carrasco L, Vazquez D (1975) Ribosome inactivation by the toxic lectins abrin and ricin. Kinetics of the enzymatic activity of the toxins A-chains. Eur J Biochem 60:281–288

    Article  CAS  PubMed  Google Scholar 

  31. Mei Q, Fredrickson CK, Lian W, Jin S, Fan ZH (2006) Ricin detection by biological signal amplification in a well-in-a-well device. Anal Chem 78:7659–7664

    Article  CAS  PubMed  Google Scholar 

  32. Chen XY, Link TM, Schramm VL (1998) Ricin A-chain: kinetics, mechanism, and RNA stem-loop inhibitors. Biochemistry 37:11605–11613

    Article  CAS  PubMed  Google Scholar 

  33. Hines HB, Brueggemann EE, Hale ML (2004) High-performance liquid chromatography-mass selective detection assay for adenine released from a synthetic RNA substrate by ricin A chain. Anal Biochem 330:119–122

    Article  CAS  PubMed  Google Scholar 

  34. Zamboni M, Brigotti M, Rambelli F, Montanaro L, Sperti S (1989) High-pressure-liquid-chromatographic and fluorimetric methods for the determination of adenine released from ribosomes by ricin and gelonin. Biochem J 259:639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brigotti M, Barbieri L, Valbonesi P, Stripe F, Montanaro L, Sperti S (1998) A rapid and sensitive method to measure the enzymatic activity of ribosome-inactivating proteins. Nucleic Acids Res 26:4306–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sturm MB, Schramm VL (2009) Detecting ricin: sensitive luminescent assay for ricin A-chain ribosome depurination kinetics. Anal Chem 81:2847–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Endo T, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain. The characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739

    CAS  PubMed  Google Scholar 

  38. Ling J, Liu WY, Wang TP (1994) Radioassay for RNA N-glycosidase with tritium-labeled sodium-borohydride or amino acid. Bioorg Chem 22:395–404

    Article  CAS  Google Scholar 

  39. Melchior WB Jr, Tolleson WH (2010) A functional quantitative polymerase chain reaction assay for ricin, shiga toxin, and related ribosome-inactivating proteins. Anal Biochem 396:204–211

    Article  CAS  PubMed  Google Scholar 

  40. Bevilacqua VLH, Nilles JM, Rice JS, Connell TR, Schenning AM, Reilly LM, Durst HD (2010) Ricin activity assay by direct analysis in real time mass spectrometry release detection of adenine release. Anal Chem 82:798–800

    Article  CAS  PubMed  Google Scholar 

  41. Kalb SR, Barr JR (2009) Mass spectrometric detection of ricin and its activity in food and clinical samples. Anal Chem 81:2037–2042

    Article  CAS  PubMed  Google Scholar 

  42. McGrath SC, Schieltz DM, McWilliams LG, Pirkle JL, Barr JR (2011) Detection and quantification of ricin beverages using isotope dilution tandem mass spectrometry. Anal Chem 83:2897–2905

    Article  CAS  PubMed  Google Scholar 

  43. USDA (2011) Animal Welfare Act. Animal Welfare Information Center. 04 May 2011. http://awic.nal.usda.gov/nal_display/index.php?info_center=3. Accessed Jan 2015

  44. Committee of the update of the guide for the care and use of laboratory animals (2010) Guide for the care and use of laboratory animals, 8th edn. The National Academies Press, Washington DC

    Google Scholar 

  45. Lin JY, Liu SY (1986) Studies on the antitumor lectins isolated from the seeds of Ricinus Communis (Castor bean). Toxicon 24:757–765

    Article  CAS  PubMed  Google Scholar 

  46. Falach R, Sapoznikov A, Gal Y, Israeli O, Leitner M, Seliger N, Erlich S, Kronman C, Sabo T (2016) Quantitative profiling of the in vivo enzymatic activity of ricin reveals disparate depurination of different pulmonary cell types. Toxicol Lett 258:11–19

    Article  CAS  PubMed  Google Scholar 

  47. Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262:8128–8130

    CAS  PubMed  Google Scholar 

  48. Fry FA, Black A (1973) Regional deposition and clearance of particles in the human nose. Aeorosol Sci 4:113–124

    Article  Google Scholar 

  49. Gal Y, Mazor O, Alcalay R, Seliger N, Aftalion M, Sapoznikov A, Falach R, Kronman C, Sabo T (2014) Antibody/doxycycline combined therapy for pulmonary ricinosis: attenuation of inflammation improves survival of ricin-intoxicated mice. Toxicol Rep 1:496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sapoznikov A, Falach R, Mazor O, Alcalay R, Gal Y, Seliger N, Sabo T, Kronman C (2015) Diverse profile of ricin-cell interactions in the lung following intranasal exposure to ricin. Toxins 7:4817–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Berthiaume Y, Matthay MA (2007) Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 159:350–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ware LB, Matthay MA (2001) Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 163:1376–1383

    Article  CAS  PubMed  Google Scholar 

  53. Berthiaume Y, Folkesson HG, Matthay MA (2002) Invited review: alveolar edema fluid clearance in the injured lung. J Appl Physiol 93:2207–2213

    Article  PubMed  Google Scholar 

  54. Garcia-Delgado M, Touma-Fernandez A, Chamorro-Marin V, Ruiz-Aguilar A, Aguilar-Alonso E, Fernandez-Mondejar E (2010) Alveolar fluid clearance in healthy pigs and influence of positive end-expiratory pressure. Crit Care 14:1–7

    Article  Google Scholar 

  55. Katalan S, Falach R, Rosner A, Goldvaser M, Brosh-Nissimov T, Dvir A, Mizrachi A, Goren O, Cohen B, Gal Y, Sapoznikov A, Erlich S, Sabo T, Kronman C (2017) A novel swine model of ricin-induced acute respiratory distress syndrome. Dis Model Mech 10:173–183

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Avital Tidhar for his useful remarks that contributed to the success of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanoch Kronman.

Ethics declarations

Ethical approval

All applicable international, national, and institutional guidelines for the care of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Conflict of interest

O. Israeli, R. Falach, O. Shifman, A. Beth-Din, C. Kronman and T. Sabo are inventors on a patent application related to this work (detection of exposure to RIP II toxins—IL 252188).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Israeli, O., Falach, R., Sapoznikov, A. et al. Determination of ricin intoxication in biological samples by monitoring depurinated 28S rRNA in a unique reverse transcription-ligase-polymerase chain reaction assay. Forensic Toxicol 36, 72–80 (2018). https://doi.org/10.1007/s11419-017-0377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11419-017-0377-6

Keywords

Navigation