Skip to main content
Log in

Evaluation of Rhododendri Mollis Flos and its representative component as a potential analgesic

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Rhododendri Mollis Flos (R. mole Flos), the dried flowers of Rhododendron mole G. Don, have the ability to relieve pain, dispel wind and dampness, and dissolve blood stasis, but they are highly poisonous. The significance of this study is to explore the analgesic application potential of R. mole Flos and its representative component. According to the selected processing methods recorded in ancient literature, the analgesic activities of wine- and vinegar-processed R. mole Flos, as well as the raw product, were evaluated in a writhing test with acetic acid and a formalin-induced pain test. Subsequently, the HPLC-TOP-MS technique was utilized to investigate the changes in active components before and after processing once the variations in activities were confirmed. Based on the results, rhodojaponin VI (RJ-Vl) was chosen for further study. After processing, especially in vinegar, R. mole Flos did not only maintain the anti-nociception but also showed reduced toxicity, and the chemical composition corresponding to these effects also changed significantly. Further investigation of its representative components revealed that RJ-VI has considerable anti-nociceptive activity, particularly in inflammatory pain (0.3 mg/kg) and peripheral neuropathic pain (0.6 mg/kg). Its toxicity was about three times lower than that of rhodojaponin III, which is another representative component of R. mole Flos. Additionally, RJ-VI mildly inhibits several subtypes of voltage-gated sodium channels (IC50 > 200 μM) that are associated with pain or cardiotoxicity. In conclusion, the chemical substances and biological effects of R. mole Flos changed significantly before and after processing, and the representative component RJ-VI has the potential to be developed into an effective analgesic.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AA:

Glacial acetic acid

ALB:

Albumin

ALP:

Alkaline phosphatase

ALT:

Alanineaminotra ferase

ASA:

Aspirin

AST:

Aspartate aminotransferase

B:

Basophilic granulocyte

CCI:

Chronic constriction injury model

CI:

Confidence interval

CHOL:

Total cholesterol

CK:

Creatine kinase

CRE:

Creatinine

DMSO:

Dimethyl sulfoxide

E:

Eosinophils

EGTA:

Ethylene glycol-bis-(2-amino-ethylether)-N,N,N′,N′-tetraacetic acid

GBP:

Gabapentin

GGT:

Gamma-glutamyltransferase

GLU:

Blood glucose

HCT:

Red blood cell specific volume

HEPES:

N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid

HGB:

Hemoglobin

L:

Lymphocyte

M:

Monocytes

MCH:

Mean corpuscular hemoglobin

MCHC:

Mean corpuscular hemoglobin concentration

MCV:

Mean corpuscular volume

MED:

Minimum effective dose

N:

Neutrophil

PLT:

Platelet count

PTWL:

Paw thermal withdrawal latency

PMWT:

Paw mechanical withdrawal threshold

RBC:

Red blood cell

Ret:

Reticulocyte count

R. mole Flos:

Rhododendri Mollis Flos

RJ-III:

Rhodojaponin III

RJ-VI:

Rhodojaponin VI

TBIL:

Total bilirubin

TG:

Triglyceride

TP:

Total protein

Urea:

Blood urea nitrogen

WBC:

White blood cell

References

  1. Sun JC, Li X, Wang Y, Luo YJ, Gao WJ, Gao WY (2020) Research progress of quality marker during Chinese materia medica processing. Chin Trad Herbal Drugs 51(10):2593–2602

    Google Scholar 

  2. Cai YQ, Hu JH, Qin J, Sun T, Li XL (2018) Rhododendron Molle (Ericaceae): phytochemistry, pharmacology, and toxicology. Chin J Nat Med 16(6):401–410. https://doi.org/10.1016/s1875-5364(18)30073-6

    Article  CAS  PubMed  Google Scholar 

  3. Commission CP (2020) Pharmacopoeia of the People’s Republic of China 2020. Chinese Medicine Science and technology Publishing house, Beijing

    Google Scholar 

  4. Tian HY (2000) Integration of Chinese ethnic medicine processing. TCM Ancient Books Publishing House, Beijing

    Google Scholar 

  5. Yang J, Zhao J, Zhang J (2022) The efficacy and toxicity of grayanoids as analgesics: a systematic review. J Ethnopharmacol 298:115581. https://doi.org/10.1016/j.jep.2022.115581

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Liu J, Dai LF, Zhang HY, Chen MN, Cai XF, Xie JK and Luo XD (2019) Unlocking the potential antioxidant and anti-inflammatory activities of Rhododendron molle G. Don. Pak J Pharm Sci 32(5(Special)):2375–2383

  7. He YC, Yao YM, Xue QW, Fang X, Liang S (2021) Anti-rheumatoid arthritis potential of diterpenoid fraction derived from Rhododendron molle fruits. Chin J Nat Med 19(3):181–187. https://doi.org/10.1016/s1875-5364(21)60019-5

    Article  CAS  PubMed  Google Scholar 

  8. Guo XH, Feng JW, You Q, Chen HP, Liu YP (2020) Research progress on poisonous Chinese medicine of Rhododendri Mollis Flos. China Pharmaceut 29(23):96–105

    Google Scholar 

  9. Cheng XA, Xie JJ, Hu MY, Zhang YB, Huang JF (2011) Induction of intracellular Ca2+ and pH changes in Sf9 insect cells by rhodojaponin-III, a natural botanic insecticide isolated from Rhododendron molle. Molecules 16(4):3179–3196. https://doi.org/10.3390/molecules16043179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang J, Yang Q, Zhao J, Sun S, Liu M, Wang Y, Feng Y and Zhang J (2022) Evaluation of Rhodojaponin III from Rhododendron molle G. Don on oral antinociceptive activity, mechanism of action, and subacute toxicity in rodents. J. Ethnopharmacol 294:115347 https://doi.org/10.1016/j.jep.2022.115347

  11. Chen QQ, Fang X, Xue QW, He YC and Liang S (2020) Study on the quality of different officinal parts of Rhododendron molle G. Don based on content determination of Rhodojaponin-III and Rhodojaponin-VI by HPLC. J Shanghai Univ Trad Chin Med 34(6):75–80

  12. Chen K, Wang T, Li Y, Wu J, Zhao CX, Liu S, Sun F, Fang Y, Hu J, Hu J, Zhang CJ, Yu H, Ma C and Yu SS (2023) Rhodojaponin VI indirectly targets Cav2.2 channels via N-ethylmaleimide-sensitive fusion protein to alleviate neuropathic pain. Acta Pharm Sin B 13(3):1326–1336 https://doi.org/10.1016/j.apsb.2023.01.021

  13. Hikino H, Ohta T, Ogura M, Ohizumi Y, Konno C, Takemoto T (1976) Structure-activity relationship of ericaceous toxins on acute toxicity in mice. Toxicol Appl Pharmacol 35(2):303–310. https://doi.org/10.1016/0041-008x(76)90289-1

    Article  CAS  PubMed  Google Scholar 

  14. Li Y, Liu YB, Zhang JJ, Liu Y, Ma SG, Qu J, Lv HN, Yu SS (2015) Antinociceptive Grayanoids from the Roots of Rhododendron molle. J Nat Prod 78(12):2887–2895. https://doi.org/10.1021/acs.jnatprod.5b00456

    Article  CAS  PubMed  Google Scholar 

  15. Zheng G, Zhou J, Huang L, Zhang H, Sun N, Zhang H, Jin P, Yue M, Meng L, Yao G (2019) Antinociceptive Grayanane Diterpenoids from the leaves of Pieris japonica. J Nat Prod 82(12):3330–3339. https://doi.org/10.1021/acs.jnatprod.9b00569

    Article  CAS  PubMed  Google Scholar 

  16. Yin ZY, Li L, Chu SS, Sun Q, Ma ZL, Gu XP (2016) Antinociceptive effects of dehydrocorydaline in mouse models of inflammatory pain involve the opioid receptor and inflammatory cytokines. Sci Rep 6:27129. https://doi.org/10.1038/srep27129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang D, Yang H, Liang Y, Wang X, Du X, Li R, Jiang Y, Ye J (2019) Antinociceptive effect of Spirocyclopiperazinium salt compound DXL-A-24 and the underlying mechanism. Neurochem Res 44(12):2786–2795. https://doi.org/10.1007/s11064-019-02899-x

    Article  CAS  PubMed  Google Scholar 

  18. Tansley SN, Macintyre LC, Diamond L, Sotocinal SG, George N, Meluban L, Austin JS, Coderre TJ, Martin LJ, Mogil JS (2019) Conditioned pain modulation in rodents can feature hyperalgesia or hypoalgesia depending on test stimulus intensity. Pain 160(4):784–792. https://doi.org/10.1097/j.pain.0000000000001454

    Article  CAS  PubMed  Google Scholar 

  19. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33(1):87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  20. Dixon WJ (1991) Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev 15(1):47–50. https://doi.org/10.1016/s0149-7634(05)80090-9

    Article  CAS  PubMed  Google Scholar 

  21. Yang D, Huang WY, Li YQ, Chen SY, Su SY, Gao Y, Meng XL, Wang P (2022) Acute and subchronic toxicity studies of rhein in immature and d-galactose-induced aged mice and its potential hepatotoxicity mechanisms. Drug Chem Toxicol 45(3):1119–1130. https://doi.org/10.1080/01480545.2020.1809670

    Article  CAS  PubMed  Google Scholar 

  22. OECD (2022) OECD Guidelines for the Testing of Chemicals. OECD Publishing, Paris

    Google Scholar 

  23. OECD (2018) Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption. OECD Publishing, Paris

    Book  Google Scholar 

  24. Zhao CG (1951) The toxin in the Rhododendri Mollis Flos. Chin Sci Bull 3(04):224

    Google Scholar 

  25. Liu X, Wang Q, Song G, Zhang G, Ye Z, Williamson EM (2014) The classification and application of toxic Chinese materia medica. Phytother Res 28(3):334–347. https://doi.org/10.1002/ptr.5006

    Article  CAS  PubMed  Google Scholar 

  26. Hu X, Dong Y, Jin X, Zhang C, Zhang T, Zhao J, Shi J, Li J (2017) The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain. Brain Behav Immun 64:180–194. https://doi.org/10.1016/j.bbi.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  27. Gao Y, Fan H, Nie A, Yang K, Xing H, Gao Z, Yang L, Wang Z, Zhang L (2022) Aconitine: a review of its pharmacokinetics, pharmacology, toxicology and detoxification. J Ethnopharmacol 293:115270. https://doi.org/10.1016/j.jep.2022.115270

    Article  CAS  PubMed  Google Scholar 

  28. Li C-H, Zhang J-Y, Zhang X-Y, Li S-H and Gao J-M (2019) An overview of grayanane diterpenoids and their biological activities from the Ericaceae family in the last seven years. Eur J Med Chem 166:400–416 https://doi.org/10.1016/j.ejmech.2019.01.079

  29. Guo XH, Feng JW, Wang YD, Wu WH, Chen HP, Leng J, Liu YP (2021) Herbal textual research and processing historical evolution of Rhododendri Mollis Flos. Chin J Exp Tradit Med Formulae 27(22):172–180

    Google Scholar 

  30. Chen LL, Verpoorte R, Yen HR, Peng WH, Cheng YC, Chao J, Pao LH (2018) Effects of processing adjuvants on traditional Chinese herbs. J Food Drug Anal 26(2s):S96-s114. https://doi.org/10.1016/j.jfda.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abbott FV, Franklin KBJ, Westbrook FR (1995) The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain 60(1):91–102. https://doi.org/10.1016/0304-3959(94)00095-v

    Article  PubMed  Google Scholar 

  32. Bennett GJ, Chung JM, Honore M, Seltzer Z (2003) Models of neuropathic pain in the rat. Curr Protoc Pharmacol Chapter 5: Unit5.32 https://doi.org/10.1002/0471141755.ph0532s21

  33. Nozadze I, Tsiklauri N, Gurtskaia G, Tsagareli MG (2016) Role of thermo TRPA1 and TRPV1 channels in heat, cold, and mechanical nociception of rats. Behav Pharmacol 27(1):29–36. https://doi.org/10.1097/fbp.0000000000000176

    Article  CAS  PubMed  Google Scholar 

  34. Albin KC, Carstens MI, Carstens E (2008) Modulation of oral heat and cold pain by irritant chemicals. Chem Senses 33(1):3–15. https://doi.org/10.1093/chemse/bjm056

    Article  CAS  PubMed  Google Scholar 

  35. Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012) Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat Methods 9(6):585–587. https://doi.org/10.1038/nmeth.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100. https://doi.org/10.1007/bf00656997

    Article  CAS  PubMed  Google Scholar 

  37. Olander ER, Janzen D, Villmann C, Jensen AA (2020) Comparison of biophysical properties of α1β2 and α3β2 GABAA receptors in whole-cell patch-clamp electrophysiological recordings. PLoS ONE 15(6):e0234080. https://doi.org/10.1371/journal.pone.0234080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li CL, Yang R, Sun Y, Feng Y and Song YB (2021) N58A exerts analgesic effect on trigeminal neuralgia by regulating the MAPK pathway and tetrodotoxin-resistant sodium channel. Toxins (Basel) 13(5) https://doi.org/10.3390/toxins13050357

Download references

Acknowledgements

We would like to thank Shanghai University of Traditional Chinese Medicine and Shanghai Institute of Materia Medica, Chinese Academy of Sciences for their help in terms of equipment and facilities.

Funding

The work was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 23S21900300 and No. 14401901400) and the Shanghai Municipal Commission of Health and Family Planning (Grant No. ZY (2021–2023)-0208).

Author information

Authors and Affiliations

Authors

Contributions

Xin Wang: investigation, data analysis. Wenjing Guo: investigation and data analysis. Bo Zhang, Haixia Xu, Qingyun Yang and Jingyi Zhao: investigation. Yi Feng: supervision and funding acquisition. Jian Yang: investigation, data analysis, visualization, and writing—original draft. Jiquan Zhang: conceptualization, project administration, and supervision. All authors read and approved the final manuscript. m15110357908@163.com; 503,666,853@qq.com; zb15670581612@163.com; haixiaxu@hotmail.com; yqy_1117@163.com; 448,403,430@qq.com; fyi@vip.sina.com; Yjsmile2018@163.com; jqzhang@shutcm.edu.cn.

Corresponding authors

Correspondence to Jian Yang or Jiquan Zhang.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1585 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guo, W., Zhang, B. et al. Evaluation of Rhododendri Mollis Flos and its representative component as a potential analgesic. J Nat Med 78, 753–767 (2024). https://doi.org/10.1007/s11418-024-01815-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-024-01815-0

Keywords

Navigation