Skip to main content

Advertisement

Log in

Inhibitory effects of senkyuchachosan on SARS-CoV-2 papain-like protease activity in vitro

  • Natural Resource Letter
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Papain-like protease (PLpro) enzyme plays a vital role in viral replication as it breaks down polyproteins and disrupts the host's immune response. There are few reports on Kampo formulas that focus on PLpro activity. In this study, we evaluated the inhibitory effects of senkyuchachosan, a traditional Japanese medicine, on PLpro of SARS-CoV-2, the virus responsible for causing COVID-19. We purified the PLpro enzyme and conducted in vitro enzymatic assays using specific substrates. Among the nine crude drugs present in senkyuchachosan, four (Cyperi Rhizoma, Schizonepetae Spica, Menthae Herba, and Camelliae sinensis Folium [CsF]) strongly inhibited PLpro activity. CsF, derived from Camellia sinensis (green tea), contains polyphenols, including catechins and tannins. To confirm that the PLpro inhibitory effects of senkyuchachosan predominantly stem from tannins, the tannins were removed from the decoction using polyvinylpolypyrrolidone (PVPP). The inhibitory effect of senkyuchachosan on PLpro activity was reduced by the removal of PVPP. In addition, the tannin fraction obtained from the CsF extracts showed significant PLpro inhibitory effects. These findings lay the groundwork for the potential development of therapeutic agents that target SARS-CoV-2 infection by intervening in proteolytic cleavage of the virus.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kumar A, Singh R, Kaur J, et al Wuhan to World: The COVID-19 Pandemic. https://doi.org/10.3389/fcimb.2021.596201

  2. Coronavirus disease (COVID-19). https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 27 Jul 2023

  3. Sarangi MK, Padhi S, Dheeman S et al (2022) Diagnosis, prevention, and treatment of coronavirus disease: a review. Expert Rev Anti Infect Ther 20:243–266. https://doi.org/10.1080/14787210.2021.1944103

    Article  CAS  PubMed  Google Scholar 

  4. Gordon DE, Jang GM, Bouhaddou M et al (2020) A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583:459–468. https://doi.org/10.1038/S41586-020-2286-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Freitas BT, Durie IA, Murray J et al (2020) Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect Dis 6:2099–2109. https://doi.org/10.1021/ACSINFECDIS.0C00168

    Article  CAS  PubMed  Google Scholar 

  6. Wu C, Liu Y, Yang Y et al (2020) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10:766–788. https://doi.org/10.1016/J.APSB.2020.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lobo-Galo N, Terrazas-López M, Martínez-Martínez A, Díaz-Sánchez ÁG (2021) FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. J Biomol Struct Dyn 39:3419–3427. https://doi.org/10.1080/07391102.2020.1764393

    Article  CAS  PubMed  Google Scholar 

  8. Zhang L, Lin D, Sun X et al (2020) Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368:409–412. https://doi.org/10.1126/SCIENCE.ABB3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin MH, Moses DC, Hsieh CH et al (2018) Disulfiram can inhibit MERS and SARS coronavirus papain-like proteases via different modes. Antivir Res 150:155–163. https://doi.org/10.1016/J.ANTIVIRAL.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  10. Arya R, Prashar V, Kumar M (2022) Evaluating stability and activity of SARS-CoV-2 PLpro for high-throughput screening of inhibitors. Mol Biotechnol. https://doi.org/10.1007/S12033-021-00383-Y

    Article  PubMed  Google Scholar 

  11. Diamond MS, Kanneganti TD (2022) Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol 23:165–176. https://doi.org/10.1038/S41590-021-01091-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee JS, Shin EC (2020) The type I interferon response in COVID-19: implications for treatment. Nat Rev Immunol 20:585–586. https://doi.org/10.1038/S41577-020-00429-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McClain CB, Vabret N (2020) SARS-CoV-2: the many pros of targeting PLpro. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-020-00335-Z

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ratia K, Kilianski A, Baez-Santos YM et al (2014) Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog. https://doi.org/10.1371/JOURNAL.PPAT.1004113

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jeon YJ, Yoo HM, Chung CH (2010) ISG15 and immune diseases. Biochim Biophys Acta 1802:485–496. https://doi.org/10.1016/J.BBADIS.2010.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klemm T, Ebert G, Calleja DJ et al (2020) Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. https://doi.org/10.15252/EMBJ.2020106275

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kawall A, Lewis DSM, Sharma A et al (2023) Inhibitory effect of phytochemicals towards SARS-CoV-2 papain like protease (PLpro) proteolytic and deubiquitinase activity. Front Chem. https://doi.org/10.3389/FCHEM.2022.1100460

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shin D, Mukherjee R, Grewe D et al (2020) Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587:657–662. https://doi.org/10.1038/S41586-020-2601-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuchta K, Cameron S, Lee M et al (2022) Which East Asian herbal medicines can decrease viral infections? Phytochem Rev 21:219–237. https://doi.org/10.1007/S11101-021-09756-2

    Article  CAS  PubMed  Google Scholar 

  20. Yoshino T, Arita R, Horiba Y, Watanabe K (2019) The use of maoto (Ma-Huang-Tang), a traditional Japanese Kampo medicine, to alleviate flu symptoms: a systematic review and meta-analysis. BMC Complement Altern Med. https://doi.org/10.1186/S12906-019-2474-Z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ogawa-Ochiai K, Ishikawa H, Nishimura H et al (2022) Clinical and epidemiological features of healthcare workers after a coronavirus disease 2019 cluster infection in Japan and the effects of Kampo formulas-Hochuekkito and Kakkonto: a retrospective cohort study. Medicine 101:E29748. https://doi.org/10.1097/MD.0000000000029748

    Article  CAS  PubMed  Google Scholar 

  22. Masui S, Nabeshima S, Ajisaka K et al (2017) Maoto, a Traditional japanese herbal medicine, inhibits uncoating of influenza virus. Evid Based Complement Alternat Med. https://doi.org/10.1155/2017/1062065

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kakimoto M, Nomura T, Nazmul T et al (2022) In vitro suppression of SARS-CoV-2 infection by existing kampo formulas and crude constituent drugs used for treatment of common cold respiratory symptoms. Front Pharmacol. https://doi.org/10.3389/FPHAR.2022.804103

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ishida K, Sato H (2006) Kampo medicines as alternatives for treatment of migraine: six case studies. Complement Ther Clin Pract 12:276–280. https://doi.org/10.1016/J.CTCP.2006.07.002

    Article  PubMed  Google Scholar 

  25. Nishimura H, Okamoto M, Dapat I et al (2021) Inactivation of SARS-CoV-2 by catechins from green tea. Jpn J Infect Dis 74:421–423. https://doi.org/10.7883/YOKEN.JJID.2020.902

    Article  CAS  PubMed  Google Scholar 

  26. Upadhyay S, Tripathi PK, Singh M et al (2020) Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother Res 34:3411–3419. https://doi.org/10.1002/PTR.6802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jang M, Park YI, Cha YE et al (2020) Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med. https://doi.org/10.1155/2020/5630838

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu SY, Wang W, Ke JP et al (2022) Discovery of Camellia sinensis catechins as SARS-CoV-2 3CL protease inhibitors through molecular docking, intra and extra cellular assays. Phytomedicine. https://doi.org/10.1016/J.PHYMED.2021.153853

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gogoi B, Chowdhury P, Goswami N et al (2021) Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation. Mol Divers 25:1963–1977. https://doi.org/10.1007/S11030-021-10211-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Latos-Brozio M, Masek A (2020) Natural polymeric compound based on high thermal stability catechin from green tea. Biomolecules 10:1191. https://doi.org/10.3390/BIOM10081191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsai KC, Huang YC, Liaw CC et al (2021) A traditional Chinese medicine formula NRICM101 to target COVID-19 through multiple pathways: a bedside-to-bench study. Biomed Pharmacother. https://doi.org/10.1016/J.BIOPHA.2020.111037

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yamauchi Y, Nakamura A, Kitai M et al (2007) Improved sample pre-treatment for determination of caffeine in tea using a cartridge filled with polyvinylpolypyrroridone (PVPP). Chem Pharm Bull (Tokyo) 55:1393–1396. https://doi.org/10.1248/CPB.55.1393

    Article  CAS  PubMed  Google Scholar 

  33. Mitchell AE, Hong YJ, May JC et al (2005) A Comparison of polyvinylpolypyrrolidone (PVPP), silica xerogel and a polyvinylpyrrolidone (PVP)–silica co-product for their ability to remove polyphenols from beer. J Inst Brew 111:20–25. https://doi.org/10.1002/J.2050-0416.2005.TB00644.X

    Article  CAS  Google Scholar 

  34. Goto I, Saga S, Ichitani M et al (2023) Investigation of components in roasted green tea that inhibit Streptococcus mutans biofilm formation. Foods 12:2502. https://doi.org/10.3390/FOODS12132502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wall ME, Wani MC, Brown DM et al (1996) Effect of tannins on screening of plant extracts for enzyme inhibitory activity and techniques for their removal. Phytomedicine 3:281–285. https://doi.org/10.1016/S0944-7113(96)80067-5

    Article  CAS  PubMed  Google Scholar 

  36. Fu Z, Huang B, Tang J et al (2021) The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun. https://doi.org/10.1038/S41467-020-20718-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rota PA, Oberste MS, Monroe SS et al (2003) Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:1394–1399. https://doi.org/10.1126/SCIENCE.1085952

    Article  CAS  PubMed  Google Scholar 

  38. Temmam S, Vongphayloth K, Baquero E et al (2022) Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature 604:330–336. https://doi.org/10.1038/s41586-022-04532-4

    Article  CAS  PubMed  Google Scholar 

  39. Ullrich S, Nitsche C (2022) SARS-CoV-2 papain-like protease: structure, function and inhibition. ChemBioChem 23:e202200327. https://doi.org/10.1002/CBIC.202200327

    Article  CAS  PubMed  Google Scholar 

  40. Montone CM, Aita SE, Arnoldi A et al (2021) Characterization of the trans-epithelial transport of green tea (C. sinensis) catechin extracts with in vitro inhibitory effect against the SARS-CoV-2 papain-like protease activity. Molecules. https://doi.org/10.3390/MOLECULES26216744

    Article  PubMed  PubMed Central  Google Scholar 

  41. Storozhuk M, Lee S, Lee JI, Park J (2023) Green tea consumption and the COVID-19 omicron pandemic era: pharmacology and epidemiology. Life 13:852. https://doi.org/10.3390/LIFE13030852/S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Du A, Zheng R, Disoma C et al (2021) Epigallocatechin-3-gallate, an active ingredient of Traditional Chinese Medicines, inhibits the 3CLpro activity of SARS-CoV-2. Int J Biol Macromol 176:1–12. https://doi.org/10.1016/J.IJBIOMAC.2021.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chourasia M, Koppula PR, Battu A et al (2021) EGCG, a green tea catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS-CoV-2 infection. Molecules. https://doi.org/10.3390/MOLECULES26051200

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang F, Zhang S, Zhang J, Yuan F (2022) Systematic review of ethnomedicine, phytochemistry, and pharmacology of Cyperi Rhizoma. Front Pharmacol. https://doi.org/10.3389/FPHAR.2022.965902

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhao X, Zhou M (2022) Review on chemical constituents of Schizonepeta tenuifolia Briq. and their pharmacological effects. Molecules. https://doi.org/10.3390/MOLECULES27165249

    Article  PubMed  PubMed Central  Google Scholar 

  46. Masumoto N, Ito M (2023) Genetic identification of the original plant species for Mentha Herb listed in the Japanese Pharmacopoeia and analyses of their essential oil composition. J Nat Med 77:489–495. https://doi.org/10.1007/S11418-023-01690-1

    Article  CAS  PubMed  Google Scholar 

  47. Le-Trilling VTK, Mennerich D, Schuler C et al (2022) Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro. BMC Biol. https://doi.org/10.1186/S12915-022-01468-Z

    Article  PubMed  PubMed Central  Google Scholar 

  48. Durán-Lara EF, López-Cortés XA, Castro RI et al (2015) Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices. Food Chem 168:464–470. https://doi.org/10.1016/J.FOODCHEM.2014.07.048

    Article  PubMed  Google Scholar 

  49. Srinivasan V, Brognaro H, Prabhu PR et al (2022) Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease. Commun Biol 5:1–12. https://doi.org/10.1038/s42003-022-03737-7

    Article  CAS  Google Scholar 

Download references

Funding

This study was partially supported by JSPS KAKENHI (Grant numbers JP23K14372 to M. K. and JP22K06625 to T.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Kitamura.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiba, Y., Tanikawa, T., Hayashi, T. et al. Inhibitory effects of senkyuchachosan on SARS-CoV-2 papain-like protease activity in vitro. J Nat Med 78, 784–791 (2024). https://doi.org/10.1007/s11418-024-01788-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-024-01788-0

Keywords

Navigation