Skip to main content
Log in

Relationship between ephedrine alkaloid profile in Ephedra gerardiana and soil characteristics of glacial landforms in southeastern Tibetan Plateau, China

  • Natural Resource Letter
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

In the Kaluxung River catchment of the southeastern Tibetan Plateau in China, we identified three Ephedra gerardiana communities on different soils and glacial landforms from 4842 to 4899 m above sea level: a moraine community located on constantly collapsing sandy gravel alpine steppe slopes with exposed bedrock on the outer slope of the terminal moraine of the Qiangyong Glacier on Mt. Kaluxung; an outwash plain community located on a gentle alpine steppe slope with exposed bedrock at the terminal end of the outwash plain in the glacial valley of the southeast side of Mt. Noijinkangsang; and a river terrace community located in an alpine meadow on a rock-scattered flat river terrace along a glacier-fed river in the outwash plain in the glacial valley of the southeast side of Mt. Noijinkangsang. Based on the finding of identical DNA sequences of the intergenic spacers of chloroplast trnT–trnF and trnS–trnfM regions for all Ephedra specimens examined in this study, the E. gerardiana in this study were considered to comprise a genetically homogeneous population. Analysis of the relationship between ephedrine alkaloid profiles of these three communities and soil characteristics showed that the river terrace community in wet alpine meadow had significantly lower ephedrine content than did the moraine and outwash plain communities in dry alpine steppe (moraine community, 1.52 ± 0.44; outwash plain community, 1.42 ± 0.68; river terrace community, 0.33 ± 0.65%DW), but pseudoephedrine content showed the reverse pattern (moraine community, 0.86 ± 0.30; outwash plain community, 0.73 ± 0.60; river terrace community, 1.50 ± 0.71%DW). In addition, total alkaloid (ephedrine and pseudoephedrine) content in the river terrace community (1.83 ± 0.24%DW) was significantly lower than that in the moraine community (2.38 ± 0.64%DW) and outwash plain community (2.15 ± 0.55%DW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Abourashed EA, El-Alfy AT, Khan IA, Walker L (2003) Ephedra in perspective—a current review. Phytother Res 17:703–712

    Article  CAS  Google Scholar 

  2. Matsumoto M, Hirayama M, Ohtomi N, Ohno T, Nomura Y, Iida O, Sugimura K, Kawahara N, Tsuchida T, Mikage M (2015) Influence of genetic factors on the ephedrine alkaloid composition ratio of Ephedra plants. J Nat Med 69:63–67

    Article  CAS  Google Scholar 

  3. Kondo N, Mikage M, Idaka K (1999) Medico-botanical studies of Ephedra plants from the Himalayan region, Part III. Causative factors of variation of alkaloid content in herbal stems. Nat Med 53:194–200

    Google Scholar 

  4. Wang LL, Kakiuchi N, Mikage M (2010) Studies of Ephedra plants in Asia. Part 6: Geographical changes of anatomical features and alkaloids content of Ephedra sinica. J Nat Med 64:63–69

    Article  CAS  Google Scholar 

  5. Minami M, Mori T, Honda Y, Ueno K, Murakami T, Ajioka Y, Atsumi T, Joshi KJ, Yadav PM, Kandel DR, Nakano M, Shinozaki J, Itoh S, Nakane T, Takano A (2020) Physical and chemical characteristics of soils in Ephedra gerardiana and E. pachyclada habitats of Kali Gandaki Valley in Central Nepal. J Nat Med 74:825–833

    Article  CAS  Google Scholar 

  6. Minami M, Taichi F, Honda Y, Ueno K, Shinozaki J, Itoh S, Takano A, Berdiyar J, Maltsev II, Nakane T (2021) Environmental and soil characteristics in Ephedra habitats of Uzbekistan. J Nat Med 75:246–258

    Article  CAS  Google Scholar 

  7. Fu LK, Yu YF, Riedl H (1999) Ephedraceae. In: Wu ZY, Raven PH (eds) Flora of China, vol 4. Science Press and Beijing and Missouri Botanical Garden Press, St. Louis, pp 97–101

    Google Scholar 

  8. Long C, Kakiuchi N, Takahashi A, Komatsu K, Cai S, Mikage M (2004) Phylogenetic analysis of the DNA sequence of the non-coding region of nuclear ribosomal DNA and chloroplast of Ephedra plants in China. Planta Med 70:1080–1084

    Article  CAS  Google Scholar 

  9. Qin AL, Wang MM, Cun YZ, Yang FS, Wang SS, Ran JH, Wang XQ (2013) Phylogeographic evidence for a link of species divergence of Ephedra in the Qinghai-Tibetan Plateau and adjacent regions to the Miocene Asian aridification. PLoS ONE 8(2):e56243. https://doi.org/10.1371/journal.pone.0056243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De J, Zhu W, Liu T, Wang Z, Zhong Y (2017) Development of microsatellite markers using Illumina Miseq sequencing to characterize Ephedra gerardiana (Ephedraceae). Appl Plant Sci 5:1600104. https://doi.org/10.3732/apps.1600104

    Article  Google Scholar 

  11. Chang DHS (1981) The vegetation zonation of the Tibetan Plateau. MRD 1:29–48

    Article  Google Scholar 

  12. Chang DHS (1983) The Tibetan Plateau in relation to the vegetation of China. Ann Missouri Bot Gard 70:564–570

    Article  Google Scholar 

  13. Pandey MR (2006) Use of medicinal plants in traditional Tibetan therapy system in upper Mustang, Nepal. Our Nat 4:69–82

    Article  Google Scholar 

  14. Gaire BP, Subedi L (2011) Medicinal plant diversity and their pharmacological aspects of Nepal Himalayas. Phcog J 3:6–17

    Article  Google Scholar 

  15. Cui JF, Zhou TH, Zhang JS, Lou ZC (1991) Analysis of alkaloids in Chinese Ephedra species by gas chromatographic methods. Phytochem Anal 2:116–119

    Article  CAS  Google Scholar 

  16. Kakiuchi N, Inoue K, Kurita Y, Ohkubo K, Tsuda Y, Mikage M (2007) Survey of Ephedra resources in the Northern areas of Pakistan and their genetic diversity. J Nat Med 61:357–365

    Article  CAS  Google Scholar 

  17. Ministry of Health, Labour and Welfare (2016) Ephedra herb. In: The Japanese pharmacopoeia, 17 edn. Ministry of Health, Labour and Welfare, Tokyo, p 1849

  18. Zhang F, Zhang H, Hagen SC, Ye M, Wang D, Gui D, Zeng C, Tian L, Liu J (2015) Snow cover and runoff modelling in a high mountain catchment with scarce data: effects of temperature and precipitation parameters. Hydrol Process 29:52–65

    Article  CAS  Google Scholar 

  19. Tian L, Liu Z, Gong T, Yin C, Yu W, Yao T (2008) Isotopic variation in the lake water balance at the Yamdruk-tso basin, southern Tibetan Plateau. Hydrol Process 22:3386–3392

    Article  CAS  Google Scholar 

  20. Owen LA, Finkel RC, Barnard PL, Haizhou M, Asahi K, Caffee MW, Derbyshire E (2005) Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by 10Be cosmogenic radionuclide surface exposure dating. Quat Sci Rev 24:1391–1411

    Article  Google Scholar 

  21. Chinese Academy of Sciences (1988) Vegetation of Xizang (Tibet). Science Press, Beijing (in Chinese)

    Google Scholar 

  22. Kletter C, Kriechbaum M (2001) Habitats of Tibetan medicinal plants. In: Tibetan medicinal plants with a foreword of H. H. the 14th Dalai Lama, Medpharm GmbH Scientific Publishers, Stuttgart, p 15–21

  23. Minami M, Tezuka T, Zhu L, Nishimura M (2010) Survey of vascular flora around Lake Pumayum Co, an alpine lake located in the southeastern Tibetan plateau in China. J Phytogeogr Taxon 58:50–56

    Google Scholar 

  24. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  25. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131

    Article  CAS  Google Scholar 

  26. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  Google Scholar 

  27. Minami M, Mori T, Honda Y, Ueno K, Murakami T, Ajioka Y, Atsumi T, Joshi KJ, Yadav PM, Kandel DR, Nakano M, Shinozaki J, Itoh S, Nakane T, Takano A (2021) Correction to: Physical and chemical characteristics of soils in Ephedra gerardiana and E. pachyclada habitats of Kali Gandaki Valley in Central Nepal. J Nat Med. https://doi.org/10.1007/s11418-021-01595-x

    Article  PubMed  Google Scholar 

  28. Oyama M, Takehara H (1967) Revised standard soil color charts, Hujihira, Tokyo

  29. Murano H, Takata Y, Isoi T (2015) Origin of the soil texture classification system used in Japan. Soil Sci Plant Nutr 61:688–697

    Article  Google Scholar 

  30. Li J, Zhang F, Lin L, Li H, Du Y, Li Y, Cao G (2015) Response of the plant community and soil water status to alpine Kobresia meadow degradation gradients on the Qinghai-Tibetan Plateau, China. Ecol Res 30:589–596

    Article  CAS  Google Scholar 

  31. Wang CT, Cao GM, Wang QL, Jing ZC, Ding LM, Long RJ (2008) Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. Sci China Ser C-Life Sci 51:86–94

    Article  CAS  Google Scholar 

  32. Wang ZR, Yang GJ, Yi SH, Chen SY, Wu Z, Guan JY, Zhao CC, Zhao QD, Ye BS (2012) Effects of environmental factors on the distribution of plant communities in a semi-arid region of the Qinghai-Tibet Plateau. Ecol Res 27:667–675

    Article  Google Scholar 

  33. Murakami T, Hayashi Y, Minami M, Wang J, Torii T, Fujitani T, Yoshinari G, Zhu L, Nishimura M (2012) Limnological features of glacier-fed rivers in the Southern Tibetan Plateau, China. Limnology 13:301–307

    Article  Google Scholar 

  34. Hayashi Y, Murakami T, Minami M, Wang J, Takaaki T, Fujitani T, Yoshinari G, Zhu L, Nishimura M (2013) Physicochemical and biological features of glacier-fed rivers in Tibet, China. In: Biol Inl Wat Suppl 2 (Proc 1st Symp BSA), p 27–37

  35. Singh VB, Ramanathan AL, Sharma P, Pottakkal JG (2015) Dissolved ion chemistry and suspended sediment characteristics of meltwater draining from Chhota Shigri Glacier, western Himalaya, India. Arab J Geosci 8:281–293

    Article  CAS  Google Scholar 

  36. Herzschuh U, Tarasov P, Wünnemann B, Hartmann K (2004) Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeogr Palaeoclimatol Palaeoecol 211:1–17

    Article  Google Scholar 

  37. Ohta S (1985) A climosequence of soils occurred in Kali Gandaki Valley in Central Nepal. I Some chemical properties Pedologist 29:2–17 (in Japanese with English summary)

    Google Scholar 

  38. Gintzburger G, Toderich KN, Mardonov BK, Mahmudov MM (2003) A brief physico-geographical and ecological presentation of Uzbekistan. In: Gintzburger G, Toderich KN, Mardonov BK, Mahmudov MM (eds) Rangelands of the arid and semi-arid zones in Uzbekistan. CIRAD-ICARDA, Montferrier-sur-Lez, pp 21–85

    Google Scholar 

  39. Porwal MC, Sharma L, Roy PS (2003) Stratification and mapping of Ephedra gerardiana Wall. in Poh (Lahul and Spiti) using remote sensing and GIS. Curr Sci 84:208–212

    Google Scholar 

  40. Hong H, Chen HB, Yang DH, Shang MY, Wang X, Cai SQ, Mikage M (2011) Comparison of contents of five ephedrine alkaloids in three official origins of Ephedra Herb in China by high-performance liquid chromatography. J Nat Med 65:623–628

    Article  CAS  Google Scholar 

  41. Hayashi H, Shukurova M, Oikawa S, Ohta M, Fujii I, Nasyrova F, Aliev K, Hisoriev H, Fattokhov I, Saidov M (2019) Field survey of Ephedra plants in Central Asia (1). Characterization of Ephedra equisetina, Ephedra intermedia, and their putative hybrids collected in the Zaravshan Mountains of Tajikistan. Biol Pharm Bull 42:552–560

    Article  CAS  Google Scholar 

  42. Laitinen LA, Empey DW, Bye C, Britton MG, McDonnell K, Hughes DTD (1982) A comparison of the bronchodilator action of pseudoephedrine and ephedrine in patients with reversible airway obstruction. Eur J Clin Pharmacol 23:107–109

    Article  CAS  Google Scholar 

  43. Akiba K, Miyamoto A, Suzuki T, Anezaki K, Tadano T, Sakurada S, Kisara K (1979) Effects of d-pseudoephedrine on trachea-bronchial muscle and the cardiovascular system. Folia Pharmacol Japon 75:383–390

    Article  CAS  Google Scholar 

  44. Hikino H, Konno C, Takata H, Tamada M (1980) Antiinflammatory principle of Ephedra herbs. Chem Pharm Bull 28:2900–2904

    Article  CAS  Google Scholar 

  45. Ohtomi N, Nomura Y, Ide T, Ohno T, Mouri C, Mikage M (2013) Studies of cultivation of Ephedra plants (part 2). Effect of sea water on the growth and alkaloid content of Ephedra sinica Stapf. Jpn J Med Resour 35(1):1–8 (in Japanese with English summary)

    Google Scholar 

  46. Ando H, Ni SR, Sasaki Y, Mikage M (2016) Studies of cultivation of Ephedra plants (Part 7) Yearly variation of total alkaloids content and production of Japanese pharmacopoeia standardized Ephedra. Jpn J Med Resour 38(1):20–27 (in Japanese with English summary)

    Google Scholar 

  47. Ando H, Kusaba D, Mikage M, Sasaki Y (2016) Studies of cultivation of Ephedra plants (Part 9) Localization of alkaloid content in the aerial part of the Ephedra plant labeled Ep-13. Jpn J Med Resour 38(2):10–16 (in Japanese with English summary)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the bilateral program—joint research projects between the National Natural Sciences Foundation of China (NSFC; grant nos. 40701194, 40871099) and the Japan Society for the Promotion of Science (JSPS), and the “Evidence-based participatory R&D for increasing domestic production of high-quality crude drugs” program from the Advanced Research and Development Programs for Medical Innovation (Grant Number 21ak0101159h0001) AMED, Japan. The authors thank Dr. Mitsugu Nishimura, former professor at Tokai University in Japan, for the opportunity to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoyasu Minami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minami, M., Mori, T., Honda, Y. et al. Relationship between ephedrine alkaloid profile in Ephedra gerardiana and soil characteristics of glacial landforms in southeastern Tibetan Plateau, China. J Nat Med 76, 703–714 (2022). https://doi.org/10.1007/s11418-022-01628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-022-01628-z

Keywords

Navigation