Skip to main content
Log in

Cell death-inducing activities via Hsp inhibition of the sesquiterpenes isolated from Valeriana fauriei

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Three new sesquiterpenes, valerianaterpenes I–III, and eight known compounds have been isolated from the methanol extract of the rhizomes and roots of Valeriana fauriei. The chemical structures of the three new sesquiterpenes were elucidated based on chemical and spectroscopic evidence. The absolute stereochemistry of valerianaterpene I was determined using X-ray crystallography. The cell death-inducing activity of isolated compounds alone or combination with Adriamycin (ADR) was observed by time-lapse cell imaging. Although the isolated compounds did not affect the number of mitotic entry cells and dead cells alone, kessyl glycol, kessyl glycol diacetate, and iso-teucladiol significantly increased the number of dead cells on ADR treated human cervical cancer cells. One of the mechanisms of cell death-inducing activity for the kessyl glycol acetate was suggested to be the inhibition of heat-shock protein 105 (Hsp105) expression level. This paper first deals with the naturally occurring compounds as Hsp105 inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang P-C, Ran X-H, Luo H-R, Hu J-M, Chen R, Ma Q-Y, Dai H-F, Liu Y-Q, Xie M-J, Zhou J, Zhao Y-X (2011) Volvalerelactones A and B, two new sesquiterpenoid lactones with an unprecedented skeleton from Valeriana officinalis var. latifolia. Org Lett 13:3036–3039

    Article  CAS  Google Scholar 

  2. Piccinelli A-L, Arana S, Caceres A, di Villa Bianca Rd, Sorrentino R, Rastrelli L, (2004) New lignans from the roots of Valeriana prionophylla with antioxidative and vasorelaxant activities. J Nat Prod 67:1135–1140

    Article  CAS  Google Scholar 

  3. Lee D-H, Park S-H, Huh Y-H, Kim M-J, Seo H-D, Ha T-Y, Ahn J, Jang Y-J, Jung C-H (2020) Iridoids of Valeriana fauriei contribute to alleviating hepatic steatosis in obese mice by lipophagy. Biomed Pharmacother 125:109950

    Article  CAS  Google Scholar 

  4. Liu X-G, Gao P-Y, Wang G-S, Song S-J, Li L-Z, Li X, Yao X-S, Zhang Z-X (2012) In vivo antidepressant activity of sesquiterpenes from the roots of Valeriana fauriei Briq. Fitoterapia 83:599–603

    Article  CAS  Google Scholar 

  5. Wang P-C, Ran X-H, Luo H-R, Ma Q-Y, Zhou J, Hu J-M, Zhao Y-X (2016) Volvalerine A, an unprecedented N-containing sesquiterpenoid dimer derivative from Valeriana officinalis var. latifolia. Fitoterapia 109:174–178

    Article  CAS  Google Scholar 

  6. Oshima Y, Matsuoka S, Ohizumi Y (1995) Antidepressant principles of Valeriana fauriei roots. Chem Pharm Bull 43:169–170

    Article  CAS  Google Scholar 

  7. Guo Y, Xu J, Li Y, Watanabe R, Oshima Y, Yamakuni T, Ohizumi Y (2006) Iridoids and sesquiterpenoids with NGF-potentiating activity from the rhizomes and roots of Valeriana fauriei. Chem Pharm Bull 54:123–125

    Article  CAS  Google Scholar 

  8. Liu X-G, Zhang W-C, Gao P-Y, Wang G-S, Li L-Z, Song S-J, Zhang X, Yao X-S, Liu K, Zhang Z-X (2013) Two new sesquiterpenes from the roots of Valeriana fauriei Briq. Helv Chim Acta 96:651–655

    Article  CAS  Google Scholar 

  9. Nishiya K, Kimura T, Takeya K, Itokawa H (1992) Sesquiterpenoids and iridoid glycosides from Valeriana faueriei. Phytochemistry 31:3511–3514

    Article  CAS  Google Scholar 

  10. Matsumoto T, Kitagawa T, Imahori D, Matsuzaki A, Saito Y, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T (2021) Linderapyrone: A Wnt signal inhibitor isolated from Lindera umbellata. Bioorg Med Chem Lett 45:128161

    Article  CAS  Google Scholar 

  11. Matsumoto T, Kitagawa T, Teo S, Anai Y, Ikeda R, Imahori D, Ahmad HSB, Watanabe T (2018) Structures and antimutagenic effects of onoceranoid-type triterpenoids from the leaves of Lansium domesticum. J Nat Prod 81:2187–2194

    Article  CAS  Google Scholar 

  12. Matsumoto T, Imahori D, Saito Y, Zhang W, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T (2020) Cytotoxic activities of sesquiterpenoids from the aerial parts of Petasites japonicus against cancer stem cells. J Nat Med 74:689–701

    Article  CAS  Google Scholar 

  13. Matsumoto T, Imahori D, Achiwa K, Saito Y, Ohta T, Yoshida T, Kojima N, Yamashita M, Nakayama Y, Watanabe T (2020) Chemical structures and cytotoxic activities of the constituents isolated from Hibiscus tiliaceus. Fitoterapia 142:104524

    Article  CAS  Google Scholar 

  14. Damiani RM, Moura DJ, Viau CM, Caceres RA, Henriques JAP, Saffi J (2016) Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 90:2063–2076

    Article  CAS  Google Scholar 

  15. Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290:10981–10993

    Article  CAS  Google Scholar 

  16. Yamane T, Saito Y, Teshima H, Hagino M, Kakihana A, Sato S, Shimada M, Kato Y, Kuga T, Yamagishi N, Nakayama Y (2019) Hsp105α suppresses Adriamycin-induced cell death via nuclear localization signal-dependent nuclear accumulation. J Cell Biochem 120:17951–17962

    Article  CAS  Google Scholar 

  17. Lee S-O, Choi S-Z, Choi S-U, Kim G-H, Kim Y-C, Lee K-R (2006) Cytotoxic terpene hydroperoxides from the aerial parts of Aster spathulifofius. Arc Pharm Res 29:845–848

    Article  CAS  Google Scholar 

  18. Fokialakis N, Magiatis P, Mitaku S (2002) Essential oil constituents of Valeriana italica and Valeriana tuberosa. Stereochemical and conformational study of 15-acetoxyvaleranone. Z Naturforsch C 57:791–796

    Article  CAS  Google Scholar 

  19. Dowling M-S, Vanderwal C-D (2010) Ring-closing metathesis of allylsilanes as a flexible strategy toward cyclic terpenes. short syntheses of teucladiol, isoteucladiol, poitediol, and dactylol and an attempted synthesis of caryophyllene. J Org Chem 75:6908–6922

    Article  CAS  Google Scholar 

  20. Buchi G, White D-M (1957) The ring fission of cyclopropanes: the constitution of maaliol. J Am Chem Soc 79:750–751

    Article  CAS  Google Scholar 

  21. Ito S, Kodama M, Nozoe T (1967) Structure and absolute configuration of α-kessyl alcohol and kessyl glycol. Tetrahedron lett 23:553–563

    Article  CAS  Google Scholar 

  22. Takamura K, Kawaguchi M, Nabata H (1975) The preparation and pharmacological screening of kessoglycol derivative. Yakugaku Zasshi 95:1198–1204

    Article  CAS  Google Scholar 

  23. Takamura K, Nabata H, Kawaguchi M (1975) The pharmaceutical action on the kessoglycol 8-monoacetate. Yakugaku Zasshi 95:1205–1209

    Article  CAS  Google Scholar 

  24. Williams M-J, Deak H-L, Snapper M-L (2007) Intramolecular cyclobutadiene cycloaddition/cyclopropanation/thermal fragmentation: An effective strategy for the asymmetric synthesis of pleocarpenene and pleocarpenone. J Am Chem Soc 129:486–487

    Article  CAS  Google Scholar 

  25. Silva M, Wiesenfeld A, Sammes P-G, Tyler T-W (1977) New sesquiterpenes from Pleocarpus revolutus. Phytochemistry 16:379–385

    Article  CAS  Google Scholar 

  26. Aguilar-Guadarrama A-B, Rios M-Y (2004) Three new sesquiterpenes from Croton arboreous. J Nat Prod 67:914–917

    Article  CAS  Google Scholar 

  27. Kitagawa T, Matsumoto T, Imahori D, Kobayashi M, Okayama M, Ohta T, Yoshida T, Watanabe T (2021) Limonoids isolated from the Fortunella crassifolia and the Citrus junos with their cell death inducing activity on Adriamycin treated cancer cell. J Nat Med, in press

  28. Kai M, Nakatsura T, Egami H, Senju S, Nishimura Y, Ogawa M (2003) Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 10:1777–1782

    CAS  PubMed  Google Scholar 

  29. Yang S, Ren X, Liang Y, Yan Y, Zhou Y, Hu J, Wang Z, Song F, Wang F, Liao W, Liao W, Ding Y, Liang L (2020) KNK437 restricts the growth and metastasis of colorectal cancer via targeting DNAJA1/CDC45 axis. Oncogene 39:249–261

    Article  CAS  Google Scholar 

  30. Saito Y, Yamagishi N, Hatayama T (2008) Nuclear localization mechanism of Hsp105β and its possible function in mammalian cells. J Biochem 145:185–191

    Article  Google Scholar 

  31. Griffin T-M, Valdez T-V, Mestril R (2003) Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. Amer J Physiol Heart Circ Phy 287:1081–1088

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 20H03397 and 20J14567.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takahiro Matsumoto or Tetsushi Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 664 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Kitagawa, T., Imahori, D. et al. Cell death-inducing activities via Hsp inhibition of the sesquiterpenes isolated from Valeriana fauriei. J Nat Med 75, 942–948 (2021). https://doi.org/10.1007/s11418-021-01543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01543-9

Keywords

Navigation