Skip to main content
Log in

Hepatoprotective effects of vicenin-2 and scolymoside through the modulation of inflammatory pathways

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of two structurally related flavonoids found in Cyclopia subternata, vicenin-2 (VCN) and scolymoside (SCL) on lipopolysaccharide (LPS)-induced liver failure in mice and to elucidate underlying mechanisms. Mice were treated intravenously with VCN or SCL at 12 h after LPS treatment. LPS significantly increased mortality, serum levels of alanine transaminase, aspartate transaminase, and inflammatory cytokines, and toll-like receptor 4 (TLR4) protein expression; these effects of LPS were inhibited by VCN or SCL. It also attenuated the LPS-induced activation of myeloid differentiation primary response gene 88 and TLR-associated activator of interferon-dependent signaling pathways of the TLR system. Our results suggest that VCN or SCL protects against LPS-induced liver damage by inhibiting the TLR-mediated inflammatory pathway, indicating its potential to treat liver diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu F, Lin Y, Li Z, Ma X, Han Q, Liu Y, Zhou Q, Liu J, Li R, Li J, Gao L (2014) Glutathione S-transferase A1 (GSTA1) release, an early indicator of acute hepatic injury in mice. Food Chem Toxicol 71:225–230

    CAS  PubMed  Google Scholar 

  2. Wu Z, Han M, Chen T, Yan W, Ning Q (2010) Acute liver failure: mechanisms of immune-mediated liver injury. Liver Int 30:782–794

    CAS  PubMed  Google Scholar 

  3. Kato Y, Morikawa A, Sugiyama T, Koide N, Jiang GZ, Takahashi K, Yokochi T (1995) Role of tumor necrosis factor-alpha and glucocorticoid on lipopolysaccharide (LPS)-induced apoptosis of thymocytes. FEMS Immunol Med Microbiol 12:195–204

    CAS  PubMed  Google Scholar 

  4. Kosai K, Matsumoto K, Funakoshi H, Nakamura T (1999) Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice. Hepatology 30:151–159

    CAS  PubMed  Google Scholar 

  5. Prior RL, Cao G (1999) Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc Soc Exp Biol Med 220:255–261

    CAS  PubMed  Google Scholar 

  6. Warren CP (1999) Antioxidant effects of herbs. Lancet 353:676

    CAS  PubMed  Google Scholar 

  7. Joubert E, Joubert ME, Bester C, De Beer D, De Lange JH (2011) Honeybush (Cyclopia spp.): from local cottage industry to global markets—the catalytic and supporting role of research. S Afr J Bot 77:889–907

    Google Scholar 

  8. Islam MN, Ishita IJ, Jung HA, Choi JS (2014) Vicenin 2 isolated from Artemisia capillaris exhibited potent anti-glycation properties. Food Chem Toxicol 69:55–62

    CAS  PubMed  Google Scholar 

  9. Sanchez GM, Re L, Giuliani A, Nunez-Selles AJ, Davison GP, Leon-Fernandez OS (2000) Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 42:565–573

    CAS  PubMed  Google Scholar 

  10. Leiro JM, Alvarez E, Arranz JA, Siso IG, Orallo F (2003) In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-alpha and transforming growth factor-beta genes. Biochem Pharmacol 65:1361–1371

    CAS  PubMed  Google Scholar 

  11. Pardo Andreu GL, Maurmann N, Reolon GK, de Farias CB, Schwartsmann G, Delgado R, Roesler R (2010) Mangiferin, a naturally occurring glucoxilxanthone improves long-term object recognition memory in rats. Eur J Pharmacol 635:124–128

    CAS  PubMed  Google Scholar 

  12. Jack BU, Malherbe CJ, Huisamen B, Gabuza K, Mazibuko-Mbeje S, Schulze AE, Joubert E, Muller CJF, Louw J, Pheiffer C (2017) A polyphenol-enriched fraction of Cyclopia intermedia decreases lipid content in 3T3-L1 adipocytes and reduces body weight gain of obese db/db mice. S Afr J Bot 110:216–229

    CAS  Google Scholar 

  13. Marrassini C, Davicino R, Acevedo C, Anesini C, Gorzalczany S, Ferraro G (2011) Vicenin-2, a potential anti-inflammatory constituent of Urtica circularis. J Nat Prod 74:1503–1507

    CAS  PubMed  Google Scholar 

  14. Lee W, Yoon EK, Kim KM, Park DH, Bae JS (2015) Antiseptic effect of vicenin-2 and scolymoside from Cyclopia subternata (honeybush) in response to HMGB1 as a late sepsis mediator in vitro and in vivo. Can J Physiol Pharmacol 93:709–720

    CAS  PubMed  Google Scholar 

  15. Lee W, Ku SK, Bae JS (2015) Ameliorative effect of vicenin-2 and scolymoside on TGFBIp-induced septic responses. Inflammation 38:2166–2177

    CAS  PubMed  Google Scholar 

  16. Kang H, Ku SK, Jung B, Bae JS (2015) Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo. Inflamm Res 64:1005–1021

    CAS  PubMed  Google Scholar 

  17. Lee IC, Bae JS (2016) Anti-inflammatory effects of vicenin-2 and scolymoside on polyphosphate-mediated vascular inflammatory responses. Inflamm Res 65:203–212

    CAS  PubMed  Google Scholar 

  18. Lee I-C, Bae J-S (2015) Inhibitory effect of vicenin-2 and scolymoside on secretory group IIA phospholipase A2. Anim Cells Syst 19:305–311

    CAS  Google Scholar 

  19. Lee W, Bae JS (2015) Antithrombotic and antiplatelet activities of vicenin-2. Blood Coagul Fibrinolysis 26:628–634

    CAS  PubMed  Google Scholar 

  20. Yoon EK, Ku SK, Lee W, Kwak S, Kang H, Jung B, Bae JS (2015) Antitcoagulant and antiplatelet activities of scolymoside. BMB Rep 48:577–582

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ku SK, Bae JS (2016) Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo. Can J Physiol Pharmacol 94:287–295

    CAS  PubMed  Google Scholar 

  22. Lee Y, Jeong GS, Kim KM, Lee W, Bae JS (2018) Cudratricusxanthone A attenuates sepsis-induced liver injury via SIRT1 signaling. J Cell Physiol 233:5441–5446

    CAS  PubMed  Google Scholar 

  23. Kirschning CJ, Bauer S (2001) Toll-like receptors: cellular signal transducers for exogenous molecular patterns causing immune responses. Int J Med Microbiol 291:251–260

    CAS  PubMed  Google Scholar 

  24. Horner AA, Redecke V, Raz E (2004) Toll-like receptor ligands: hygiene, atopy and therapeutic implications. Curr Opin Allergy Clin Immunol 4:555–561

    CAS  PubMed  Google Scholar 

  25. Kutikhin AG (2011) Impact of toll-like receptor 4 polymorphisms on risk of cancer. Hum Immunol 72:193–206

    CAS  PubMed  Google Scholar 

  26. Brown J, Wang H, Hajishengallis GN, Martin M (2011) TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res 90:417–427

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    CAS  PubMed  Google Scholar 

  28. Patterson H, Nibbs R, McInnes I, Siebert S (2014) Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin Exp Immunol 176:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben Ari Z, Avlas O, Pappo O, Zilbermints V, Cheporko Y, Bachmetov L, Zemel R, Shainberg A, Sharon E, Grief F, Hochhauser E (2012) Reduced hepatic injury in toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cell Physiol Biochem 29:41–50

    CAS  PubMed  Google Scholar 

  30. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582

    CAS  PubMed  Google Scholar 

  31. Song GY, Chung CS, Jarrar D, Chaudry IH, Ayala A (2001) Evolution of an immune suppressive macrophage phenotype as a product of P38 MAPK activation in polymicrobial sepsis. Shock 15:42–48

    CAS  PubMed  Google Scholar 

  32. Wang X, Qin W, Song M, Zhang Y, Sun B (2016) Exogenous carbon monoxide inhibits neutrophil infiltration in LPS-induced sepsis by interfering with FPR1 via p38 MAPK but not GRK2. Oncotarget 7:34250–34265

    PubMed  PubMed Central  Google Scholar 

  33. Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4304–4310

    CAS  PubMed  Google Scholar 

  34. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    CAS  PubMed  Google Scholar 

  35. David S, Ghosh CC, Kumpers P, Shushakova N, Van Slyke P, Khankin EV, Karumanchi SA, Dumont D, Parikh SM (2011) Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 300:L851–L862

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu X, Ju J, Lin Z, Xiao W, Li X, Zhuang B, Zhang T, Ma X, Ma C, Su W, Wang Y, Qin X, Liang S (2016) Target deletion of complement component 9 attenuates antibody-mediated hemolysis and lipopolysaccharide (LPS)-induced acute shock in mice. Sci Rep 6:30239

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ku SK, Baek MC, Bae JS (2015) Anti-inflammatory effects of methylthiouracil in vitro and in vivo. Toxicol Appl Pharmacol 288:374–386

    CAS  PubMed  Google Scholar 

  38. Lee W, Lee Y, Jeong GS, Ku SK, Bae JS (2017) Cudratricusxanthone A attenuates renal injury in septic mice. Food Chem Toxicol 106:404–410

    CAS  PubMed  Google Scholar 

  39. Ozdulger A, Cinel I, Koksel O, Cinel L, Avlan D, Unlu A, Okcu H, Dikmengil M, Oral U (2003) The protective effect of N-acetylcysteine on apoptotic lung injury in cecal ligation and puncture-induced sepsis model. Shock 19:366–372

    CAS  PubMed  Google Scholar 

  40. Lee W, Ku SK, Kim JE, Cho GE, Song GY, Bae JS (2019) Pulmonary protective functions of rare ginsenoside Rg4 on particulate matter-induced inflammatory responses. Biotechnol Bioprocess Eng 24:445–453

    CAS  Google Scholar 

  41. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, MacSween RN et al (1995) Histological grading and staging of chronic hepatitis. J Hepatol 22:696–699

    CAS  PubMed  Google Scholar 

  42. Jonsson JR, Clouston AD, Ando Y, Kelemen LI, Horn MJ, Adamson MD, Purdie DM, Powell EE (2001) Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Gastroenterology 121:148–155

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, IC., Bae, JS. Hepatoprotective effects of vicenin-2 and scolymoside through the modulation of inflammatory pathways. J Nat Med 74, 90–97 (2020). https://doi.org/10.1007/s11418-019-01348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01348-x

Keywords

Navigation