Skip to main content
Log in

Application of a proton quantitative nuclear magnetic resonance spectroscopy method for the determination of actinodaphnine in Illigera aromatica and Illigera henryi

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Illigera aromatica S. Z. Huang et S. L. Mo and Illigera henryi W. W. Sm., belonging to the genus Illigera (Hernandiaceae), are used as herbal medicines for promoting blood circulation and treating tuberculosis. Actinodaphnine, the major bioactive alkaloid, plays an important role in the quality controls of the herbs. In the present study, a rapid, simple, accurate, and precise proton quantitative nuclear magnetic resonance (1H-qNMR) method was developed to determine the content of actinodaphnine in I. aromatica and I. henryi. DMSO-d6 enabled satisfactory separation of the signals to be integrated in 1H NMR spectrum. 1,4-Dinitrobenzene was selected as an internal standard. The limits of determination and quantitation were 0.005 and 0.038 mg/mL, respectively. This work implied that 1H-qNMR represents a feasible alternative to HPLC-based methods for quantitation of actinodaphnine in I. aromatica and I. henryi and is suitable for the quality control of I. aromatica and I. henryi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Huang SZ (1985) A new species and some medicinal plants of Illigera BL. from Guangxi. Guihaia 5:17–20

    CAS  Google Scholar 

  2. Flora of China Editorial Committee (1982) Flora Reipublicae Popularis Sinicae. Science Press, Beijing

    Google Scholar 

  3. Mo S, Li Z, Ou Y, Wei S, Si X, Fan D (2006) Study on chemical components of essential oil in Illigera aromatica S.Z. Huang et S.L. Mo by GC-MS. Lishizhen Med Mater Med Res 17:2512–2513

    CAS  Google Scholar 

  4. Xie L, Li P, Gong Z, Ou Y (2011) Study on chemical consituents of Illigera aromatica S. Z. Huang et S. L. Mo. Contemp Med 17:31–32

    Google Scholar 

  5. Dong JW, Cai L, Li XJ, Wang JP, Mei RF, Ding ZT (2017) Monoterpene esters and aporphine alkaloids from Illigera aromatica with inhibitory effects against cholinesterase and NO production in LPS-stimulated RAW264.7 macrophages. Arch Pharm Res 40:1394–1402

    Article  CAS  Google Scholar 

  6. Dong JW, Cai L, Li XJ, Shu Y, Wang JP, Ding ZT (2018) A novel sesquiterpene derivative with a seven-membered B ring from Illigera aromatica. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1428596

    Article  PubMed  Google Scholar 

  7. Dong J-W, Cai L, Li X-J, Mei R-F, Wang J-P, Luo P, Shu Y, Ding Z-T (2017) Fermentation of Illigera aromatica with Clonostachys rogersoniana producing novel cytotoxic menthane-type monoterpenoid dimers. RSC Adv 7:38956–38964

    Article  CAS  Google Scholar 

  8. Li X-J, Dong J-W, Cai L, Wang J-P, Yu N-X, Ding Z-T (2017) Illigerones A and B, two new long-chain secobutanolides from Illigera henryi W. W. Sm. Phytochem Lett 19:181–186

    Article  CAS  Google Scholar 

  9. Kongkiatpaiboon S, Duangdee N, Prateeptongkum S, Tayana N, Inthakusol W (2017) Simultaneous HPLC analysis of crebanine, dicentrine, stephanine and tetrahydropalmatine in Stephania venosa. Rev Bras Farmacogn 27:691–697

    Article  CAS  Google Scholar 

  10. Branch SK (2005) Guidelines from the International Conference on Harmonisation (ICH). J Pharm Biomed Anal 38:798–805

    Article  CAS  Google Scholar 

  11. Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 14:135–153

    Article  CAS  Google Scholar 

  12. Zhou J, Yin Y (2016) Strategies for large-scale targeted metabolomics quantification by liquid chromatography-mass spectrometry. Analyst 141:6362–6373

    Article  CAS  Google Scholar 

  13. Pauli GF, Godecke T, Jaki BU, Lankin DC (2012) Quantitative 1H NMR. Development and potential of an analytical method: an update. J Nat Prod 75:834–851

    Article  CAS  Google Scholar 

  14. Huang F, Pan S, Pu Y, Ben H, Ragauskas AJ (2014) 19F NMR spectroscopy for the quantitative analysis of carbonyl groups in bio-oils. RSC Adv 4:17743

    Article  CAS  Google Scholar 

  15. Frank O, Kreissl JK, Daschner A, Hofmann T (2014) Accurate determination of reference materials and natural isolates by means of quantitative 1H NMR spectroscopy. J Agric Food Chem 62:2506–2515

    Article  CAS  Google Scholar 

  16. Yuan Y, Song Y, Jing W, Wang Y, Yang X, Liu D (2014) Simultaneous determination of caffeine, gallic acid, theanine, (−)-epigallocatechin and (−)-epigallocatechin-3-gallate in green tea using quantitative 1H-NMR spectroscopy. Anal Methods 6:907

    Article  CAS  Google Scholar 

  17. Tanaka R, Inagaki R, Sugimoto N, Akiyama H, Nagatsu A (2017) Application of a quantitative 1H-NMR (1H-qNMR) method for the determination of geniposidic acid and acteoside in Plantaginis semen. J Nat Med 71:315–320

    Article  CAS  Google Scholar 

  18. Tanaka R, Shibata H, Sugimoto N, Akiyama H, Nagatsu A (2016) Application of a quantitative 1H-NMR method for the determination of paeonol in Moutan cortex, Hachimijiogan and Keishibukuryogan. J Nat Med 70:797–802

    Article  CAS  Google Scholar 

  19. del Campo G, Berregi I, Caracena R, Zuriarrain J (2010) Quantitative determination of caffeine, formic acid, trigonelline and 5-(hydroxymethyl)furfural in soluble coffees by 1H NMR spectrometry. Talanta 81:367–371

    Article  Google Scholar 

  20. de Graaf RA, Behar KL (2003) Quantitative 1H NMR spectroscopy of blood plasma metabolites. Anal Chem 75:2100–2104

    Article  Google Scholar 

  21. Bussy U, Giraudeau P, Tea I, Boujtita M (2013) Understanding the degradation of electrochemically-generated reactive drug metabolites by quantitative NMR. Talanta 116:554–558

    Article  CAS  Google Scholar 

  22. Dong JW, Li XJ, Cai L, Shi JY, Li YF, Yang C, Li ZJ (2018) Simultaneous determination of alkaloids dicentrine and sinomenine in Stephania epigeae by 1H NMR spectroscopy. J Pharm Biomed Anal 160:330–335

    Article  CAS  Google Scholar 

  23. Ohtsuki T, Sato K, Abe Y, Sugimoto N, Akiyama H (2015) Quantification of acesulfame potassium in processed foods by quantitative 1H NMR. Talanta 131:712–718

    Article  CAS  Google Scholar 

  24. Emwas A-H, Roy R, McKay RT, Ryan D, Brennan L, Tenori L, Luchinat C, Gao X, Zeri AC, Gowda GAN, Raftery D, Steinbeck C, Salek RM (2016) Recommendations and standardization of biomarker quantification using NMR-based metabolomics with particular focus on urinary analysis. J Proteome Res 15:360–373

    Article  CAS  Google Scholar 

  25. Emwas A-HM, Salek RM, Griffin JL, Merzaban J (2013) NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics 9:1048–1072

    Article  CAS  Google Scholar 

  26. Wallmeier J, Samol C, Ellmann L, Zacharias HU, Vogl FC, Garcia M, Dettmer K, Oefner PJ, Gronwald W, Investigators GS (2017) Quantification of metabolites by NMR spectroscopy in the presence of protein. J Proteome Res 16:1784–1796

    Article  CAS  Google Scholar 

  27. Beyer T, Schollmayer C, Holzgrabe U (2010) The role of solvents in the signal separation for quantitative 1H NMR spectroscopy. J Pharm Biomed Anal 52:51–58

    Article  CAS  Google Scholar 

  28. Dixon AM, Larive CK (1997) Modified pulsed-field gradient NMR experiments for improved selectivity in the measurement of diffusion coefficients in complex mixtures: application to the analysis of the Suwannee River fulvic acid. Anal Chem 69:2122–2128

    Article  CAS  Google Scholar 

  29. Holzgrabe U (2010) Quantitative NMR spectroscopy in pharmaceutical applications. Prog Nucl Magn Reson Spectrosc 57:229–240

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a Yunnan Local Colleges Applied Basic Research Project (No. 2017FH001-092), a grant from the Science and Technology Project of Yunnan Provincial Department of Science and Technology (No. 2018FD081), a grant from the Shanghai Key Laboratory of Rare Earth Functional Materials, and a grant from the Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wei Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, JW., Li, XJ., Shi, JY. et al. Application of a proton quantitative nuclear magnetic resonance spectroscopy method for the determination of actinodaphnine in Illigera aromatica and Illigera henryi. J Nat Med 73, 312–317 (2019). https://doi.org/10.1007/s11418-018-1264-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-018-1264-0

Keywords

Navigation