Skip to main content

Advertisement

Log in

Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Cancer and stem cells exhibit similar features, including self-renewal, differentiation and immortality. The expression of stem-cell-related genes in cancer cells is demonstrated to be potentially correlated with cancer cell behaviour, affecting both drug response and tumor recurrence. There is an emerging body of evidence that subpopulations of tumors carry a distinct molecular sign and are selectively resistant to chemotherapy. Therefore, it is important to find novel therapeutic agents that could suppress the stem-like features of cancer cells while inhibiting their proliferation. Myrtucommulone-A (MC-A) is an active compound of a nonprenylated acylphloroglucinol isolated from the leaves of myrtle. Here we have investigated the potential of MC-A in inhibiting the expression of self-renewal regulatory factors and cancer stem cell markers in a bladder cancer cell line HTB-9. We used RT-PCR, immunocytochemistry, flow cytometry and western blotting to examine the expression of pluripotency- and multipotency-associated markers with or without treatment with MC-A. Treatment with MC-A not only decreased cancer cell viability and proliferation but also resulted in a decrease in the expression of pluripotency- and multipotency-associated markers such as NANOG, OCT-4, SOX-2, SSEA-4, TRA-1-60, CD90, CD73 and CD44. MC-A treatment was also observed to decrease the sphere-forming ability of HTB-9 cells. In summary, this study provides valuable information on the presence of stem-cell marker expression in HTB-9 cells and our results imply that MC-A could be utilized to target cancer cells with stem-like characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dawood S, Austin L, Cristofanilli M (2014) Cancer stem cells: implications for cancer therapy. Oncology 28. pii: 202935

  2. O’Connor ML, Xiang D, Shigdar S, Macdonald J, Li Y, Wang T, Pu C, Wang Z, Qiao L, Duan W (2014) Cancer stem cells: a contentious hypothesis now moving forward. Cancer Lett 344:180–187

    Article  PubMed  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Cruceru ML, Neagu M, Demoulin JB, Constantinescu SN (2013) Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms. J Cell Mol Med 17:1218–1235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Fitzgerald TL, McCubrey JA (2014) Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul 56:45–50

    Article  CAS  PubMed  Google Scholar 

  6. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451:345–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chesler DA, Berger MS, Quinones-Hinojosa A (2012) The potential origin of glioblastoma initiating cells. Front Biosci (Schol Ed) 4:190–205

    Article  Google Scholar 

  8. Ji J, Wang XW (2012) Clinical implications of cancer stem cell biology in hepatocellular carcinoma. Semin Oncol 39:461–472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL (2008) Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 68:6281–6291

    Article  CAS  PubMed  Google Scholar 

  10. Amini S, Fathi F, Mobalegi J, Sofimajidpour H, Ghadimi T (2014) The expressions of stem cell markers: oct4, Nanog, Sox2, nucleostemin, Bmi, Zfx, Tcl1, Tbx3, Dppa4, and Esrrb in bladder, colon, and prostate cancer, and certain cancer cell lines. Anat Cell Biol 47:1–11

    Article  PubMed Central  PubMed  Google Scholar 

  11. Atlasi Y, Mowla SJ, Ziaee SA, Bahrami AR (2007) OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer. Int J Cancer 120:1598–1602

    Article  CAS  PubMed  Google Scholar 

  12. Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J, Lan X (2013) The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal 25:1264–1271

    Article  CAS  PubMed  Google Scholar 

  13. Ling GQ, Chen DB, Wang BQ, Zhang LS (2012) Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncol Lett 4:1264–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Ding Y, Yu AQ, Li CL, Fang J, Zeng Y, Li DS (2014) TALEN-mediated Nanog disruption results in less invasiveness, more chemosensitivity and reversal of EMT in Hela cells. Oncotarget 5:8393–8401

    PubMed Central  PubMed  Google Scholar 

  15. Huang CE, Yu CC, Hu FW, Chou MY, Tsai LL (2014) Enhanced chemosensitivity by targeting Nanog in head and neck squamous cell carcinomas. Int J Mol Sci 15:14935–14948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wang D, Lu P, Zhang H, Luo M, Zhang X, Wei X, Gao J, Zhao Z, Liu C (2014) Oct-4 and nanog promote the epithelial−mesenchymal transition of breast cancer stem cells and are associated with poor prognosis in breast cancer patients. Oncotarget 5:10803–10815

    PubMed Central  PubMed  Google Scholar 

  17. Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, Barredo I, López-Ruiz JA, Zabalza I, Kypta R, Vivanco M (2014) Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 6:66–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ben Hsouna A, Hamdi N, Miladi R, Abdelkafi S (2014) Myrtus communis essential oil: chemical composition and antimicrobial activities against food spoilage pathogens. Chem Biodivers 11:571–580

    Article  CAS  PubMed  Google Scholar 

  19. Messaoud C, Laabidi A, Boussaid M (2012) Myrtus communis L. infusions: the effect of infusion time on phytochemical composition, antioxidant, and antimicrobial activities. J Food Sci 77:C941–C947

    Article  CAS  PubMed  Google Scholar 

  20. Hosseinzadeh H, Khoshdel M, Ghorbani M (2011) Antinociceptive, anti-inflammatory effects and acute toxicity of aqueous and ethanolic extracts of Myrtus communis L. Aerial parts in mice. J Acupunct Meridian Stud 4:242–247

    Article  PubMed  Google Scholar 

  21. Tretiakova I, Blaesius D, Maxia L, Wesselborg S, Schulze-Osthoff K, Cinatl J Jr, Michaelis M, Werz O (2008) Myrtucommulone from Myrtus communis induces apoptosis in cancer cells via the mitochondrial pathway involving caspase-9. Apoptosis 13:119–131

    Article  CAS  PubMed  Google Scholar 

  22. Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS, Wu CW (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial−mesenchymal transdifferentiation. Cancer Res 70:10433–10444

    Article  CAS  PubMed  Google Scholar 

  23. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E, Brohée S, Salmon I, Dubois C, del Marmol V, Fuks F, Beck B, Blanpain C (2014) SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511:246–250

    Article  CAS  PubMed  Google Scholar 

  24. Luo W, Li S, Peng B, Ye Y, Deng X, Yao K (2013) Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial−mesenchymal transition in nasopharyngeal carcinoma. PLoS One 8:e56324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rajasekhar VK, Studer L, Gerald W, Socci ND, Scher HI (2011) Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling. Nat Commun 18:162

    Article  Google Scholar 

  26. Schopperle WM, DeWolf WC (2007) The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 25:723–730

    Article  CAS  PubMed  Google Scholar 

  27. Noto Z, Yoshida T, Okabe M, Koike C, Fathy M, Tsuno H, Tomihara K, Arai N, Noguchi M, Nikaido T (2013) CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol 49:787–795

    Article  CAS  PubMed  Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  29. Zöller M (2011) CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer 11:254–267

    Article  PubMed  Google Scholar 

  30. Tatokoro M, Koga F, Yoshida S, Kawakami S, Fujii Y, Neckers L, Kihara K (2012) Potential role of Hsp90 inhibitors in overcoming cisplatin resistance of bladder cancer-initiating cells. Int J Cancer 131:987–996

    Article  CAS  PubMed  Google Scholar 

  31. Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, Gill H, Presti JJ, Chang HY, van de Rijn M, Shortliffe L, Weissman IL (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA 106:14016–14021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Jiang J, Zhang Y, Chuai S, Wang Z, Zheng D, Xu F, Zhang Y, Li C, Liang Y, Chen Z (2012) Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene 31:671–682

    Article  CAS  PubMed  Google Scholar 

  33. Sukowati CH, Anfuso B, Torre G, Francalanci P, Crocè LS, Tiribelli C (2013) The expression of CD90/Thy-1 in hepatocellular carcinoma: an in vivo and in vitro study. PLoS One 8:e76830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Lobba AR, Forni MF, Carreira AC, Sogayar MC (2012) Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytometry 81:1084–1091

    Article  CAS  PubMed  Google Scholar 

  35. Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, Li ML, Tam KH, Lam CT, Poon RT, Fan ST (2008) Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 47:919–928

    Article  CAS  PubMed  Google Scholar 

  36. Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, Wang M, Westerdaal NA, Kvalheim G, Gaudernack G (2013) Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One 8:e57020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. He J, Liu Y, Zhu T, Zhu J, Dimeco F, Vescovi AL, Heth JA, Muraszko KM, Fan X, Lubman DM (2012) CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics 11(M111):010744

    PubMed  Google Scholar 

  38. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358

    Article  CAS  PubMed  Google Scholar 

  39. Gao ZW, Dong K, Zhang HZ (2014) The roles of CD73 in cancer. Biomed Res Int 2014:460654

    PubMed Central  PubMed  Google Scholar 

  40. Terp MG, Olesen KA, Arnspang EC, Lund RR, Lagerholm BC, Ditzel HJ, Leth-Larsen R (2013) Anti-human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clustering and internalization of CD73 expressed on the surface of cancer cells. J Immunol 191:4165–4173

    Article  CAS  PubMed  Google Scholar 

  41. Allard B, Pommey S, Smyth MJ, Stagg J (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19:5626–5635

    Article  CAS  PubMed  Google Scholar 

  42. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, Stagg J (2013) CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc Natl Acad Sci USA 110:11091–11096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Stagg J, Divisekera U, McLaughlin N, Sharkey J, Pommey S, Denoyer D, Dwyer KM, Smyth MJ (2010) Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci USA 107:1547–1552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Liu WD, Zhang T, Wang CL, Meng HM, Song YW, Zhao Z, Li ZM, Liu JK, Pan SH, Wang WB (2012) Sphere-forming tumor cells possess stem-like properties in human fibrosarcoma primary tumors and cell lines. Oncol Lett 4:1315–1320

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Liu J, Ma L, Xu J, Liu C, Zhang J, Liu J, Chen R, Zhou Y (2013) Spheroid body-forming cells in the human gastric cancer cell line MKN-45 possess cancer stem cell properties. Int J Oncol 42:453–459

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Hashimoto N, Tsunedomi R, Yoshimura K, Watanabe Y, Hazama S, Oka M (2014) Cancer stem-like sphere cells induced from de-differentiated hepatocellular carcinoma-derived cell lines possess the resistance to anti-cancer drugs. BMC Cancer 14:722

    Article  PubMed Central  PubMed  Google Scholar 

  47. Huang ZJ, You J, Luo WY, Chen BS, Feng QZ, Wu BL, Jiang L, Luo Q (2015) Reduced tumorigenicity and drug resistance through the downregulation of octamer-binding protein 4 and Nanog transcriptional factor expression in human breast stem cells. Mol Med Rep 11:1647–1654

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen K, Huang YH, Chen JL (2013) Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 34:732–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Nör C, Zhang Z, Warner KA, Bernardi L, Visioli F, Helman JI, Roesler R, Nör JE (2014) Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia 16:137–146

    Article  PubMed Central  PubMed  Google Scholar 

  50. Labsch S, Liu L, Bauer N, Zhang Y, Aleksandrowicz E, Gladkich J, Schönsiegel F, Herr I (2014) Sulforaphane and TRAIL induce a synergistic elimination of advanced prostate cancer stem-like cells. Int J Oncol 44:1470–1480

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Bu Y, Jia QA, Ren ZG, Zhang JB, Jiang XM, Liang L, Xue TC, Zhang QB, Wang YH, Zhang L, Xie XY, Tang ZY (2014) Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma is associated with increased autocrine of IGF1. PLoS One 9:e89686

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kong X, Ma MZ, Zhang Y, Weng MZ, Gong W, Guo LQ, Zhang JX, Wang GD, Su Q, Quan ZW, Yang JR (2014) Differentiation therapy: sesamin as an effective agent in targeting cancer stem-like side population cells of human gallbladder carcinoma. BMC Complement Altern Med 14:254

    Article  PubMed Central  PubMed  Google Scholar 

  53. El-Merahbi R, Liu YN, Eid A, Daoud G, Hosry L, Monzer A, Mouhieddine TH, Hamade A, Najjar F, Abou-Kheir W (2014) Berberis libanotica ehrenb extract shows anti-neoplastic effects on prostate cancer stem/progenitor cells. PLoS One 9:e112453

    Article  PubMed Central  PubMed  Google Scholar 

  54. Dong Y, Zhang T, Li J, Deng H, Song Y, Zhai D, Peng Y, Lu X, Liu M, Zhao Y, Yi Z (2014) Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the notch signaling. PLoS One 9:e113830

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Erciyes University Scientific Research Fund (EU-BAP), grant numbers TOA-2014-4928 and TCD-2013-4766.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banu Iskender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iskender, B., Izgi, K., Karaca, H. et al. Myrtucommulone-A treatment decreases pluripotency- and multipotency-associated marker expression in bladder cancer cell line HTB-9. J Nat Med 69, 543–554 (2015). https://doi.org/10.1007/s11418-015-0923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-015-0923-7

Keywords

Navigation