Skip to main content

Advertisement

Log in

Reviewing the potential for including habitat fragmentation to improve life cycle impact assessments for land use impacts on biodiversity

  • LCIA OF IMPACTS ON HUMAN HEALTH AND ECOSYSTEMS
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

The biosphere is progressively subjected to a variety of pressures resulting from anthropogenic activities. Habitat conversion, resulting from anthropogenic land use, is considered the dominant factor driving terrestrial biodiversity loss. Hence, adequate modelling of land use impacts on biodiversity in decision-support tools, like life cycle assessment (LCA), is a priority. State-of-the-art life cycle impact assessment (LCIA) characterisation models for land use impacts on biodiversity translate natural habitat transformation and occupation into biodiversity impacts. However, the currently available models predominantly focus on total habitat loss and ignore the spatial configuration of the landscape. That is, habitat fragmentation effects are ignored in current LCIAs with the exception of one recently developed method.

Methods

Here, we review how habitat fragmentation may affect biodiversity. In addition, we investigate how land use impacts on biodiversity are currently modelled in LCIA and how missing fragmentation impacts can influence the LCIA model results. Finally, we discuss fragmentation literature to evaluate possible methods to include habitat fragmentation into advanced characterisation models.

Results and discussion

We found support in available ecological literature for the notion that habitat fragmentation is a relevant factor when assessing biodiversity loss. Moreover, there are models that capture fragmentation effects on biodiversity that have the potential to be incorporated into current LCIA characterisation models.

Conclusions and recommendations

To enhance the credibility of LCA biodiversity assessments, we suggest that available fragmentation models are adapted, expanded and subsequently incorporated into advanced LCIA characterisation models and promote further efforts to capture the remaining fragmentation effects in LCIA characterisation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andren H, Angelstam P (1988) Elevated predation rates as an edge effect in habitat islands: experimental evidence. Ecology 69:544–547

    Google Scholar 

  • Arnillas CA, Tovar C, Cadotte MW, Buytaert W (2017) From patches to richness: assessing the potential impact of landscape transformation on biodiversity. Ecosphere 8. https://doi.org/10.1002/ecs2.2004

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Google Scholar 

  • Bender DJ, Contreras TA, Fahrig L (1998) Habitat loss and population decline : a meta-analysis of the patch size effect. Ecology 79:517–533

    Google Scholar 

  • Betts MG, Fahrig L, Hadley AS, Halstead KE, Bowman J, Robinson WD, Wiens JA, Lindenmayer DB (2014) A species-centered approach for uncovering generalities in organism responses to habitat loss and fragmentation. Ecography (Cop) 37:517–527

    Google Scholar 

  • Bontemps S, Defourny P, van Bogaert E et al (2011) GLOBCOVER 2009 products description and validation report. ESA Bull 136:53

    Google Scholar 

  • Chaudhary A, Brooks TM (2018) Land use intensity-specific global characterization factors to assess product biodiversity footprints. Environ Sci Technol 52:5094–5104

    CAS  Google Scholar 

  • Chaudhary A, Verones F, De Baan L, Hellweg S (2015) Quantifying land use impacts on biodiversity: combining species-area models and vulnerability indicators. Environ Sci Technol 49:9987–9995

    CAS  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8:e1000357. https://doi.org/10.1371/journal.pbio.1000357

    Article  CAS  Google Scholar 

  • Cook WM, Lane KT, Foster BL, Holt RD (2002) Island theory, matrix effects and species richness patterns in habitat fragments. Ecol Lett 5:619–623. https://doi.org/10.1046/j.1461-0248.2002.00366.x

    Article  Google Scholar 

  • Curran M, De Baan L, De Schryver AM et al (2011) Toward meaningful endpoints of biodiversity in life cycle assessment. Environ Sci Technol 45:70–79

    CAS  Google Scholar 

  • Curran M, Maia de Souza D, Antón A, Teixeira RFM, Michelsen O, Vidal-Legaz B, Sala S, Milà i Canals L (2016) How well does LCA model land use impacts on biodiversity?—a comparison with approaches from ecology and conservation. Environ Sci Technol 50:2782–2795

    CAS  Google Scholar 

  • de Baan L, Alkemade R, Koellner T (2013a) Land use impacts on biodiversity in LCA: a global approach. Int J Life Cycle Assess 18:1216–1230

    Google Scholar 

  • de Baan L, Mutel CL, Curran M, Hellweg S, Koellner T (2013b) Land use in life cycle assessment: global characterization factors based on regional and global potential species extinction. Environ Sci Technol 47:9281–9290

    Google Scholar 

  • de Baan L, Curran M, Rondinini C, Visconti P, Hellweg S, Koellner T (2015) High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models. Environ Sci Technol 49:2237–2244

    Google Scholar 

  • de Schryver AM, Goedkoop M (2008) Impacts of land use. In: Goedkoop MJ, Heijungs R, Huijbregts M et al (eds) ReCiPe 2008, a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; Report I: Characterisation, 1st edn. RIVM, Bilthoven, pp 89–107

    Google Scholar 

  • de Schryver AM, Goedkoop M, Leuven RSEW, Huijbregts MAJ (2010) Uncertainties in the application of the species area relationship for characterisation factors of land occupation in life cycle assessment. Int J Life Cycle Assess 15:682–691

    Google Scholar 

  • de Souza DM, Teixeira RFM, Ostermann OP (2015) Assessing biodiversity loss due to land use with life cycle assessment: are we there yet? Glob Chang Biol 21:32–47

    Google Scholar 

  • Dirzo R, Young HS, Galetti M et al (2014) Defaunation in the Anthropocene. Science 80(345):401–406

    Google Scholar 

  • Estavillo C, Pardini R, Da Rocha PLB (2013) Forest loss and the biodiversity threshold: an evaluation considering species habitat requirements and the use of matrix habitats. PLoS One 8:1–10. https://doi.org/10.1371/journal.pone.0082369

    Article  CAS  Google Scholar 

  • Ewers RM, Didham RK (2005) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117

    Google Scholar 

  • Ewers RM, Didham RK (2007) The effect of fragment shape and species’ sensitivity to habitat edges on animal population size: Contributed papers. Conserv Biol 21:926–936

    Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663

    Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8:50–59

    Google Scholar 

  • Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison SP, Jaeger JAG, Koper N, Martin AE, Martin JL, Metzger JP, Morrison P, Rhodes JR, Saunders DA, Simberloff D, Smith AC, Tischendorf L, Vellend M, Watling JI (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186

    Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Google Scholar 

  • Fletcher RJ, Didham RK, Banks-Leite C et al (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15

    Google Scholar 

  • Frischknecht R, Fantke P, Tschümperlin L, Niero M, Antón A, Bare J, Boulay AM, Cherubini F, Hauschild MZ, Henderson A, Levasseur A, McKone TE, Michelsen O, i Canals LM, Pfister S, Ridoutt B, Rosenbaum RK, Verones F, Vigon B, Jolliet O (2016) Global guidance on environmental life cycle impact assessment indicators: progress and case study. Int J Life Cycle Assess 21:429–442

    Google Scholar 

  • Geyer R, Lindner JP, Stoms DM, Davis FW, Wittstock B (2010) Coupling GIS and LCA for biodiversity assessments of land use. The International Journal of Life Cycle Assessment 15(7):692–703

    CAS  Google Scholar 

  • Goedkoop M, Spriensma R (2000) The eco-indicator 99: a damage oriented method for life cycle impact assessment - methodology report. Amersfoort

  • Goedkoop M, Spriensma R (2001) The eco-indicator 99 - a damage oriented method for life cycle impact assessment. Prod Ecol Consult 22:144–360. https://doi.org/10.1007/BF02979347

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:1–9

    Google Scholar 

  • Haddad NM, Gonzalez A, Brudvig LA et al (2017a) Experimental evidence does not support the habitat amount hypothesis. Ecography (Cop) 125:336–342

    Google Scholar 

  • Haddad NM, Holt RD, Fletcher RJ et al (2017b) Connecting models, data, and concepts to understand fragmentation’s ecosystem-wide effects. Ecography (Cop) 40:1–8

    Google Scholar 

  • Haila Y (2002) A conceptual genealogy of fragmentation research : from island biogeography to landscape ecology. Ecol Appl 12:321–334

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology (Oxford Series in Ecology and Evolution). Oxford University Press, New York

  • Hanski I (2015) Habitat fragmentation and species richness. J Biogeogr 42:989–993

    Google Scholar 

  • Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404:755–758

    CAS  Google Scholar 

  • Hanski I, Zurita GA, Bellocq MI, Rybicki J (2013) Species-fragmented area relationship. Pnas 110:12715–12720

    CAS  Google Scholar 

  • Hellweg S, Mila i Canals L (2014) Emerging approaches, challenges and opportunities in life cycle assessment. Science 80(344):1109–1113

    Google Scholar 

  • Hudson LN, Newbold T, Contu S, Hill SLL, Lysenko I, de Palma A, Phillips HRP, Senior RA, Bennett DJ, Booth H, Choimes A, Correia DLP, Day J, Echeverría-Londoño S, Garon M, Harrison MLK, Ingram DJ, Jung M, Kemp V, Kirkpatrick L, Martin CD, Pan Y, White HJ, Aben J, Abrahamczyk S, Adum GB, Aguilar-Barquero V, Aizen MA, Ancrenaz M, Arbeláez-Cortés E, Armbrecht I, Azhar B, Azpiroz AB, Baeten L, Báldi A, Banks JE, Barlow J, Batáry P, Bates AJ, Bayne EM, Beja P, Berg Å, Berry NJ, Bicknell JE, Bihn JH, Böhning-Gaese K, Boekhout T, Boutin C, Bouyer J, Brearley FQ, Brito I, Brunet J, Buczkowski G, Buscardo E, Cabra-García J, Calviño-Cancela M, Cameron SA, Cancello EM, Carrijo TF, Carvalho AL, Castro H, Castro-Luna AA, Cerda R, Cerezo A, Chauvat M, Clarke FM, Cleary DFR, Connop SP, D'Aniello B, da Silva PG, Darvill B, Dauber J, Dejean A, Diekötter T, Dominguez-Haydar Y, Dormann CF, Dumont B, Dures SG, Dynesius M, Edenius L, Elek Z, Entling MH, Farwig N, Fayle TM, Felicioli A, Felton AM, Ficetola GF, Filgueiras BKC, Fonte SJ, Fraser LH, Fukuda D, Furlani D, Ganzhorn JU, Garden JG, Gheler-Costa C, Giordani P, Giordano S, Gottschalk MS, Goulson D, Gove AD, Grogan J, Hanley ME, Hanson T, Hashim NR, Hawes JE, Hébert C, Helden AJ, Henden JA, Hernández L, Herzog F, Higuera-Diaz D, Hilje B, Horgan FG, Horváth R, Hylander K, Isaacs-Cubides P, Ishitani M, Jacobs CT, Jaramillo VJ, Jauker B, Jonsell M, Jung TS, Kapoor V, Kati V, Katovai E, Kessler M, Knop E, Kolb A, Kőrösi Á, Lachat T, Lantschner V, le Féon V, LeBuhn G, Légaré JP, Letcher SG, Littlewood NA, López-Quintero CA, Louhaichi M, Lövei GL, Lucas-Borja ME, Luja VH, Maeto K, Magura T, Mallari NA, Marin-Spiotta E, Marshall EJP, Martínez E, Mayfield MM, Mikusinski G, Milder JC, Miller JR, Morales CL, Muchane MN, Muchane M, Naidoo R, Nakamura A, Naoe S, Nates-Parra G, Navarrete Gutierrez DA, Neuschulz EL, Noreika N, Norfolk O, Noriega JA, Nöske NM, O'Dea N, Oduro W, Ofori-Boateng C, Oke CO, Osgathorpe LM, Paritsis J, Parra-H A, Pelegrin N, Peres CA, Persson AS, Petanidou T, Phalan B, Philips TK, Poveda K, Power EF, Presley SJ, Proença V, Quaranta M, Quintero C, Redpath-Downing NA, Reid JL, Reis YT, Ribeiro DB, Richardson BA, Richardson MJ, Robles CA, Römbke J, Romero-Duque LP, Rosselli L, Rossiter SJ, Roulston T'H, Rousseau L, Sadler JP, Sáfián S, Saldaña-Vázquez RA, Samnegård U, Schüepp C, Schweiger O, Sedlock JL, Shahabuddin G, Sheil D, Silva FAB, Slade EM, Smith-Pardo AH, Sodhi NS, Somarriba EJ, Sosa RA, Stout JC, Struebig MJ, Sung YH, Threlfall CG, Tonietto R, Tóthmérész B, Tscharntke T, Turner EC, Tylianakis JM, Vanbergen AJ, Vassilev K, Verboven HAF, Vergara CH, Vergara PM, Verhulst J, Walker TR, Wang Y, Watling JI, Wells K, Williams CD, Willig MR, Woinarski JCZ, Wolf JHD, Woodcock BA, Yu DW, Zaitsev AS, Collen B, Ewers RM, Mace GM, Purves DW, Scharlemann JPW, Purvis A (2014) The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol Evol 4:4701–4735

    Google Scholar 

  • Hudson LN, Newbold T, Contu S et al (2016) The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol Evol 7:145–188

    Google Scholar 

  • Ibáñez I, Katz DSW, Peltier D, Wolf SM, Connor Barrie BT (2014) Assessing the integrated effects of landscape fragmentation on plants and plant communities: the challenge of multiprocess-multiresponse dynamics. J Ecol 102:882–895

    Google Scholar 

  • Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968

    Google Scholar 

  • Kark S, van Rensburg BJ (2006) Ecotones: marginal or central areas of transition? Isr J Ecol Evol 52:29–53

    Google Scholar 

  • Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment. Part 2: generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess 13:32–48

    Google Scholar 

  • Koh LP, Ghazoul J (2010) A matrix-calibrated species-area model for predicting biodiversity losses due to land-use change. Conserv Biol 24:994–1001

    Google Scholar 

  • Koh LP, Lee TM, Sodhi NS, Ghazoul J (2010) An overhaul of the species-area approach for predicting biodiversity loss: incorporating matrix and edge effects. J Appl Ecol 47:1063–1070

    Google Scholar 

  • Köllner T (2000) Species-pool effect potentials (SPEP) as a yardstick to evaluate land-use impacts on biodiversity. J Clean Prod 8:293–311

    Google Scholar 

  • Köllner T (2002) Land use in product life cycles and its consequences for ecosystem quality. Int J Life Cycle Assess 7:130

    Google Scholar 

  • Krauss J, Bommarco R, Guardiola M, Heikkinen RK, Helm A, Kuussaari M, Lindborg R, Öckinger E, Pärtel M, Pino J, Pöyry J, Raatikainen KM, Sang A, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2010) Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol Lett 13:597–605

    Google Scholar 

  • Larrey-Lassalle P, Esnouf A, Roux P, Lopez-Ferber M, Rosenbaum RK, Loiseau E (2018a) A methodology to assess habitat fragmentation effects through regional indexes : illustration with forest biodiversity hotspots. Ecol Indic 89:543–551

    Google Scholar 

  • Larrey-Lassalle P, Loiseau E, Roux P, Lopez-Ferber M, Rosenbaum RK (2018b) Developing characterisation factors for land fragmentation impacts on biodiversity in LCA: key learnings from a sugarcane case study. Int J Life Cycle Assess 23:2126–2136

    Google Scholar 

  • Laurance WF (2008) Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol Conserv 141:1731–1744

    Google Scholar 

  • Leroux SJ, Albert CH, Lafuite AS, Rayfield B, Wang S, Gravel D (2017) Structural uncertainty in models projecting the consequences of habitat loss and fragmentation on biodiversity. Ecography (Cop) 40:36–47

    Google Scholar 

  • Lindeijer E (2000) Biodiversity and life support impacts of land use in LCA. Journal of Cleaner Production 8(4):313–319

    Google Scholar 

  • Lindgren JP, Cousins SAO (2017) Island biogeography theory outweighs habitat amount hypothesis in predicting plant species richness in small grassland remnants. Landsc Ecol 32:1895–1906

    Google Scholar 

  • MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Int J Org Evol 17:373–387

    Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, New Jersey

    Google Scholar 

  • Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JP (2012) Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conserv Biol 26:1100–1111

    Google Scholar 

  • Matias MG, Gravel D, Guilhaumon F et al (2014) Estimates of species extinctions from species-area relationships strongly depend on ecological context. Ecography (Cop) 37:431–442

    Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Google Scholar 

  • MEA (2005) Ecosystems and human well-being: biodiversity synthesis. Washington, DC

  • Melo GL, Sponchiado J, Cáceres NC, Fahrig L (2017) Testing the habitat amount hypothesis for South American small mammals. Biol Conserv 209:304–314

    Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J Life Cycle Assess 12:5–15

    Google Scholar 

  • Moilanen A, Hanski I (1998) Metapopulation dynamics : effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Google Scholar 

  • Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 80(341):504–508

    Google Scholar 

  • Mueller C, de Baan L, Koellner T (2014) Comparing direct land use impacts on biodiversity of conventional and organic milk—based on a Swedish case study. The International Journal of Life Cycle Assessment 19(1):52–68

    Google Scholar 

  • Newbold T, Hudson LN, Hill SL et al (2015) Global effects of land use on local terrestrial biodiversity. Nature 520:45–50

    CAS  Google Scholar 

  • Newbold T, Hudson LN, Arnell AP et al (2016a) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 80(535):288–291

    Google Scholar 

  • Newbold T, Hudson LN, Hill SLL, Contu S, Gray CL, Scharlemann JPW, Börger L, Phillips HRP, Sheil D, Lysenko I, Purvis A (2016b) Global patterns of terrestrial assemblage turnover within and among land uses. Ecography (Cop) 39:1151–1163

    Google Scholar 

  • Niemi GJ, McDonald ME (2004) Application of Ecological Indicators. Annual Review of Ecology, Evolution, and Systematics 35(1):89–111

    Google Scholar 

  • Pardini R, de Bueno AA, Gardner TA et al (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS One 5:e13666. https://doi.org/10.1371/journal.pone.0013666

    Article  CAS  Google Scholar 

  • Pereira HM, Daily GC (2006) Modeling biodiversity dynamics in countryside landscapes. Ecology 87:1877–1885

    Google Scholar 

  • Pereira HM, Navarro LM, Martins IS (2012) Global biodiversity change: the bad, the good, and the unknown. Annu Rev Environ Resour 37:25–50

    Google Scholar 

  • Pfeifer M, Lefebvre V, Gardner TA, Arroyo-Rodriguez V, Baeten L, Banks-Leite C, Barlow J, Betts MG, Brunet J, Cerezo A, Cisneros LM, Collard S, D'Cruze N, da Silva Motta C, Duguay S, Eggermont H, Eigenbrod F, Hadley AS, Hanson TR, Hawes JE, Heartsill Scalley T, Klingbeil BT, Kolb A, Kormann U, Kumar S, Lachat T, Lakeman Fraser P, Lantschner V, Laurance WF, Leal IR, Lens L, Marsh CJ, Medina-Rangel GF, Melles S, Mezger D, Oldekop JA, Overal WL, Owen C, Peres CA, Phalan B, Pidgeon AM, Pilia O, Possingham HP, Possingham ML, Raheem DC, Ribeiro DB, Ribeiro Neto JD, Douglas Robinson W, Robinson R, Rytwinski T, Scherber C, Slade EM, Somarriba E, Stouffer PC, Struebig MJ, Tylianakis JM, Tscharntke T, Tyre AJ, Urbina Cardona JN, Vasconcelos HL, Wearn O, Wells K, Willig MR, Wood E, Young RP, Bradley AV, Ewers RM (2014) BIOFRAG - a new database for analyzing BIOdiversity responses to forest FRAGmentation. Ecol Evol 4:1524–1537

    Google Scholar 

  • Pimm SL, Jenkins CN, Abell R et al (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 80(344):1246752

    Google Scholar 

  • Proença V, Pereira HM (2013) Species-area models to assess biodiversity change in multi-habitat landscapes: the importance of species habitat affinity. Basic Appl Ecol 14:102–114

    Google Scholar 

  • Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008) Effect of habitat area and isolation on fragmented animal populations. Proc Natl Acad Sci 105:20770–20775

    CAS  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009a) A safe operating space for humanity. Nature 461:472–475

    Google Scholar 

  • Rockström J, Steffen W, Noone K et al (2009b) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32

    Google Scholar 

  • Rybicki J, Hanski I (2013) Species-area relationships and extinctions caused by habitat loss and fragmentation. Ecol Lett 16:27–38

    Google Scholar 

  • Schmidt JH (2008) Development of LCIA characterisation factors for land use impacts on biodiversity. J Clean Prod 16:1929–1942

    Google Scholar 

  • Swift TL, Hannon SJ (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence, and applications. Biol Rev 85:35–53

    Google Scholar 

  • Teixeira RFM, De Souza DM, Curran MP et al (2016a) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod 112:4283–4287

    CAS  Google Scholar 

  • Teixeira RFM, De Souza DM, Curran MP et al (2016b) Towards consensus on land use impacts on biodiversity in LCA: UNEP/SETAC Life Cycle Initiative preliminary recommendations based on expert contributions. J Clean Prod 112:4283–4287

    CAS  Google Scholar 

  • Thompson PL, Rayfield B, Gonzalez A (2017) Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography (Cop) 40:98–108

    Google Scholar 

  • Tjørve E (2002) Habitat size and number in multi-habitat landscapes: a model approach based on species-area curves. Ecography (Cop) 25:17–24

    Google Scholar 

  • Torrenta R, Villard MA (2017) A test of the habitat amount hypothesis as an explanation for the species richness of forest bird assemblages. J Biogeogr 44:1791–1801

    Google Scholar 

  • Vogtländer JG, Lindeijer E, Witte JM, Hendriks C (2004) Characterizing the change of land-use based on flora: application for EIA and LCA. Journal of Cleaner Production 12(1):47–57

    Google Scholar 

  • Wahlberg N, Moilanen A, Hanski I (1996) Predicting the occurrence of endangered species in fragmented landscapes. Science 273:1536–1538

    CAS  Google Scholar 

  • Watling JI, Donnelly MA (2006) Fragments as islands: a synthesis of faunal responses to habitat patchiness. Conserv Biol 20:1016–1025

    Google Scholar 

  • Whittaker RJ, Araújo MB, Jepson P, Ladle RJ, Watson JEM, Willis KJ (2005) Conservation biogeography: assessment and prospect. Divers Distrib 11:3–23

    Google Scholar 

  • Wilcox BA, Murphy DD (1985) Conservation strategy : the effects of fragmentation on extinction. Am Nat 125:879–887

    Google Scholar 

Download references

Funding

This research was funded by NTNU Sustainability. NTNU Sustainability is one of the four strategic research areas at the Norwegian University of Science and Technology (NTNU) for the period 2014-2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen J. J. Kuipers.

Additional information

Responsible editor: Thomas Koellner

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuipers, K.J.J., May, R.F., Graae, B.J. et al. Reviewing the potential for including habitat fragmentation to improve life cycle impact assessments for land use impacts on biodiversity. Int J Life Cycle Assess 24, 2206–2219 (2019). https://doi.org/10.1007/s11367-019-01647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-019-01647-1

Keywords

Navigation