Skip to main content
Log in

Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Low mitochondriogenesis is critical to explain loss of muscle function in aging and in the development of frailty. The aim of this work was to explain the mechanism by which mitochondriogenesis is decreased in aging and to determine to which extent it may be prevented by exercise training. We used aged rats and compared them with peroxisome proliferator-activated receptor-γ coactivator-1α deleted mice (PGC-1α KO). PGC-1α KO mice showed a significant decrease in the mitochondriogenic pathway in muscle. In aged rats, we found a loss of exercise-induced expression of PGC-1α, nuclear respiratory factor-1 (NRF-1), and of cytochrome C. Thus muscle mitochondriogenesis, which is activated by exercise training in young animals, is not in aged or PGC-1α KO ones. Other stimuli to increase PGC-1α synthesis apart from exercise training, namely cold induction or thyroid hormone treatment, were effective in young rats but not in aged ones. To sum up, the low mitochondrial biogenesis associated with aging may be due to the lack of response of PGC-1α to different stimuli. Aged rats behave as PGC-1α KO mice. Results reported here highlight the role of PGC-1α in the loss of mitochondriogenesis associated with aging and point to this important transcriptional coactivator as a target for pharmacological interventions to prevent age-associated sarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RM, Weindruch R (2009) Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21(3):134–141

    Article  PubMed  Google Scholar 

  • Anderson RM, Barger JL, Edwards MG, Braun KH, O’Connor CE, Prolla TA, Weindruch R (2008) Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7(1):101–111

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ, Packer L, Brooks GA (1981) Biochemical adaptation of mitochondria, muscle, and whole-animal respiration to endurance training. Arch Biochem Biophys 209(2):539–554

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107(4):1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Drew B, Phaneuf S, Dirks A, Selman C, Gredilla R, Lezza A, Barja G, Leeuwenburgh C (2003) Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. Am J Physiol Regul Integr Comp Physiol 284(2):R474–R480

    PubMed  CAS  Google Scholar 

  • Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ (1994) Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 330(25):1769–1775

    Article  PubMed  CAS  Google Scholar 

  • Gill TM, Baker DI, Gottschalk M, Peduzzi PN, Allore H, Byers A (2002) A program to prevent functional decline in physically frail, elderly persons who live at home. N Engl J Med 347(14):1068–1074

    Article  PubMed  Google Scholar 

  • Gill TM, Gahbauer EA, Han L, Allore HG (2010) Trajectories of disability in the last year of life. N Engl J Med 362(13):1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Cabrera MC, Pallardo FV, Sastre J, Vina J, Garcia-del-Moral L (2003) Allopurinol and markers of muscle damage among participants in the Tour de France. Jama 289(19):2503–2504

    Article  PubMed  Google Scholar 

  • Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV, Sastre J, Vina J (2008a) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87(1):142–149

    PubMed  CAS  Google Scholar 

  • Gomez-Cabrera MC, Domenech E, Vina J (2008b) Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic Biol Med 44(2):126–131

    Article  PubMed  CAS  Google Scholar 

  • Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park JY, Ames BN (1997) Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA 94(7):3064–3069

    Article  PubMed  CAS  Google Scholar 

  • Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, Yan Z, Spiegelman BM (2007) Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 282(41):30014–30021

    Article  PubMed  CAS  Google Scholar 

  • Holloszy JO, Booth FW (1976) Biochemical adaptations to endurance exercise in muscle. Annu Rev Physiol 38:273–291

    Article  PubMed  CAS  Google Scholar 

  • Hood DA (2001) Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90(3):1137–1157

    PubMed  CAS  Google Scholar 

  • Hood DA, Irrcher I, Ljubicic V, Joseph AM (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209(Pt 12):2265–2275

    Article  PubMed  CAS  Google Scholar 

  • Hopp JF (1993) Effects of age and resistance training on skeletal muscle: a review. Phys Ther 73(6):361–373

    PubMed  CAS  Google Scholar 

  • Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA (2003) PPARgamma coactivator-1alpha expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. Am J Physiol Cell Physiol 284(6):C1669–C1677

    PubMed  CAS  Google Scholar 

  • Ji LL, Gomez-Cabrera MC, Steinhafel N, Vina J (2004) Acute exercise activates nuclear factor (NF)-kappaB signaling pathway in rat skeletal muscle. FASEB J 18(13):1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE, Mehler WR, Miquel J (1975) A fine structural study of degenerative changes in the dorsal column nuclei of aging mice. Lack of protection by vitamin E. J Gerontol 30(4):395–411

    PubMed  CAS  Google Scholar 

  • Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C (2005) Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the heart. Am J Physiol Regul Integr Comp Physiol 289(6):R1564–R1572

    Article  PubMed  CAS  Google Scholar 

  • Kelly DP (2011) Cell biology: ageing theories unified. Nature 470:342–343

    Article  PubMed  CAS  Google Scholar 

  • Lawler JM, Powers SK, Visser T, Van Dijk H, Kordus MJ, Ji LL (1993) Acute exercise and skeletal muscle antioxidant and metabolic enzymes: effects of fiber type and age. Am J Physiol 265(6 Pt 2):R1344–R1350

    PubMed  CAS  Google Scholar 

  • Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G, Hellsten Y, Hidalgo J, Pilegaard H (2008) PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle. Am J Physiol Endocrinol Metab 294(2):E463–E474

    Article  PubMed  CAS  Google Scholar 

  • Leick L, Lyngby SS, Wojtasewski JF, Pilegaard H (2010) PGC-1alpha is required for training-induced prevention of age-associated decline in mitochondrial enzymes in mouse skeletal muscle. Exp Gerontol 45(5):336–342

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM (2002) Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 277(3):1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119(1):121–135

    Article  PubMed  CAS  Google Scholar 

  • McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2010) Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46(1):23–29

    Article  PubMed  Google Scholar 

  • Miquel J (1992) An update on the mitochondrial-DNA mutation hypothesis of cell aging. Mutat Res 275(3–6):209–216

    PubMed  CAS  Google Scholar 

  • Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15(6):575–591

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L, Falcone S, Valerio A, Cantoni O, Clementi E, Moncada S, Carruba MO (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317

    Article  PubMed  CAS  Google Scholar 

  • Patch LD, Brooks GA (1980) Effects of training on VO2 max and VO2 during two running intensities in rats. Pflugers Arch 386(3):215–219

    Article  PubMed  CAS  Google Scholar 

  • Powers SK, Criswell D, Lawler J, Ji LL, Martin D, Herb RA, Dudley G (1994) Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Physiol 266(2 Pt 2):R375–R380

    PubMed  CAS  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24(1):78–90

    Article  PubMed  CAS  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92(6):829–839

    Article  PubMed  CAS  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 106(21):8665–8670

    Article  PubMed  CAS  Google Scholar 

  • Romagnoli M, Gomez-Cabrera MC, Perrelli MG, Biasi F, Pallardo FV, Sastre J, Poli G, Vina J (2010) Xanthine oxidase-induced oxidative stress causes activation of NF-kappaB and inflammation in the liver of type I diabetic rats. Free Radic Biol Med 49(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH, Goldberg AL, Spiegelman BM (2006) PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103(44):16260–16265

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T, Vina J (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263(5 Pt 2):R992–R995

    PubMed  CAS  Google Scholar 

  • Sastre J, Pallardo FV, Pla R, Pellin A, Juan G, O’Connor JE, Estrela JM, Miquel J, Vina J (1996) Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology 24(5):1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD (2010) Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e318203afa3

    Google Scholar 

  • Terjung RL (1979) The turnover of cytochrome C in different skeletal-muscle fibre types of the rat. Biochem J 178(3):569–574

    PubMed  CAS  Google Scholar 

  • Vanitallie TB (2003) Frailty in the elderly: contributions of sarcopenia and visceral protein depletion. Metabolism 52(10 Suppl 2):22–26

    Article  PubMed  Google Scholar 

  • Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT (2009) Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 106(48):20405–20410

    Article  PubMed  CAS  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants SAF2008-00270, SAF2009-08334, and BFU2007-65803/BFI from the Spanish Ministry of Education and Science; PROMETEO/2010/074 from the Consellería de Educación de la Generalitat Valenciana. ISCIII2006-RED13-027 from the “Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF)”, EU Funded COSTB35 and DPS2008-06968 from Spanish Ministry of Innovation and Science. This study has been cofinanced by FEDER funds from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Viña.

Additional information

Frederic Derbré and Mari Carmen Gomez-Cabrera contributed equally to this work.

About this article

Cite this article

Derbré, F., Gomez-Cabrera, M.C., Nascimento, A.L. et al. Age associated low mitochondrial biogenesis may be explained by lack of response of PGC-1α to exercise training. AGE 34, 669–679 (2012). https://doi.org/10.1007/s11357-011-9264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9264-y

Keywords

Navigation