Skip to main content

Advertisement

Log in

A bibliometric study on carbon cycling in vegetated blue carbon ecosystems

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Understanding carbon cycling in blue carbon ecosystems is key to sequestrating more carbon in these ecosystems to mitigate climate change. However, limited information is available on the basic characteristics of publications, research hotspots, research frontiers, and the evolution of topics related to carbon cycling in different blue carbon ecosystems. Here, we conducted bibliometric analysis on carbon cycling in salt marsh, mangrove, and seagrass ecosystems. The results showed that interest in this field has dramatically increased with time, particularly for mangroves. The USA has substantially contributed to the research on all ecosystems. Research hotspots for salt marshes were sedimentation process, carbon sequestration, carbon emissions, lateral carbon exchange, litter decomposition, plant carbon fixation, and carbon sources. In addition, biomass estimation by allometric equations was a hotspot for mangroves, and carbonate cycling and ocean acidification were hotspots for seagrasses. Topics involving energy flow, such as productivity, food webs, and decomposition, were the predominant areas a decade ago. Current research frontiers mainly concentrated on climate change and carbon sequestration for all ecosystems, while methane emission was a common frontier for mangroves and salt marshes. Ecosystem-specific research frontiers included mangrove encroachment for salt marshes, ocean acidification for seagrasses, and aboveground biomass estimation and restoration for mangroves. Future research should expand estimates of lateral carbon exchange and carbonate burial and strengthen the exploration of the impacts of climate change and restoration on blue carbon. Overall, this study provides the research status of carbon cycling in vegetated blue carbon ecosystems, which favors knowledge exchanges for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during the current study are presented in this article and its additional files.

References

  • Adame MF, Lovelock CE (2011) Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663(1):23–50

    CAS  Google Scholar 

  • Adame MF, Connolly RM, Turschwell MP, Lovelock CE, Fatoyinbo T, Lagomasino D, Goldberg LA, Holdorf J, Friess DA, Sasmito SD, Sanderman J, Sievers M, Buelow C, Kauffman JB, Bryan-Brown D, Brown CJ (2021) Future carbon emissions from global mangrove forest loss. Global Change Biol 27(12):2856–2866

    CAS  Google Scholar 

  • Al-Haj AN, Fulweiler RW (2020) A synthesis of methane emissions from shallow vegetated coastal ecosystems. Global Change Biol 26(5):2988–3005

    Google Scholar 

  • Alldred M, Liberti A, Baines SB (2017) Impact of salinity and nutrients on salt marsh stability. Ecosphere 8(11):e02010

    Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29(3):331–349

    Google Scholar 

  • Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219

    Google Scholar 

  • Alongi DM (2022) Impacts of climate change on blue carbon stocks and fluxes in mangrove forests. Forests 13(2):149

    Google Scholar 

  • Anisfeld SC, Hill TD (2012) Fertilization effects on elevation change and belowground carbon balance in a long island sound tidal marsh. Estuar Coast 35(1):201–211

    CAS  Google Scholar 

  • Arellano AR, Bianchi TS, Osburn CL, D’Sa EJ, Ward ND, Oviedo-Vargas D, Joshi ID, Ko DS, Shields MR, Kurian G, Green J (2019) Mechanisms of organic matter export in estuaries with contrasting carbon sources. J Geophys Res-Biogeo 124(10):3168–3188

    CAS  Google Scholar 

  • Aria M, Cuccurullo C (2017) bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr 11(4):959–975

    Google Scholar 

  • Arnaud M, Baird AJ, Morris PJ, Dang TH, Nguyen TT (2020) Sensitivity of mangrove soil organic matter decay to warming and sea level change. Global Change Biol 26:1899–1907

    Google Scholar 

  • Azam A, Ahmed A, Wang H, Wang YE, Zhang ZT (2021) Knowledge structure and research progress in wind power generation (WPG) from 2005 to 2020 using CiteSpace based scientometric analysis. J Clean Prod 295:126496

    CAS  Google Scholar 

  • Banerjee K, Paneerselvam A, Ramachandran P, Ganguly D, Singh G, Ramesh R (2018) Seagrass and macrophyte mediated CO2 and CH4 dynamics in shallow coastal waters. PLoS One 13(10):e0203922

    Google Scholar 

  • Billah MM, Bhuiyan MKA, Islam MA, Das J, Hoque ATMR (2022) Salt marsh restoration: an overview of techniques and success indicators. Environ Sci Pollut R 29:15347–15363

    Google Scholar 

  • Bloomfield AL, Gillanders BM (2005) Fish and invertebrate assemblages in seagrass, mangrove, saltmarsh, and nonvegetated habitats. Estuaries 28(1):63–77

    Google Scholar 

  • Bogard MJ, Bergamaschi BA, Butman DE, Anderson F, Knox SH, Windham-Myers L (2020) Hydrologic export is a major component of coastal wetland carbon budgets. Global Biogeochem Cy 34(8):e2019GB006430

    CAS  Google Scholar 

  • Buchan A, Newell SY, Butler M, Biers EJ, Hollibaugh JT, Moran MA (2003) Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl Environ Microb 69(11):6676–6687

    CAS  Google Scholar 

  • Buffington KJ, Goodman AC, Freeman CM, Thorne KM (2020) Testing the interactive effects of flooding and salinity on tidal marsh plant productivity. Aquat Bot 164:103231

    Google Scholar 

  • Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47(6):1751–1763

    CAS  Google Scholar 

  • Burdige DJ, Zimmerman RC, Hu XP (2008) Rates of carbonate dissolution in permeable sediments estimated from pore-water profiles: the role of sea grasses. Limnol Oceanogr 53(2):549–565

    CAS  Google Scholar 

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350(1–2):46–72

    Google Scholar 

  • Butzeck C, Eschenbach A, Grongroft A, Hansen K, Nolte S, Jensen K (2015) Sediment deposition and accretion rates in tidal marshes are highly variable along estuarine salinity and flooding gradients. Estuar Coast 38(2):434–450

    CAS  Google Scholar 

  • Cai XL, Zhou CR, Zhou L, Xu QL (2019) A bibliometric analysis of IL-35 research from 2009 to 2018. PeerJ 7:e7992

    Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365–365

    CAS  Google Scholar 

  • Cameron C, Hutley LB, Friess DA, Brown B (2019) Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi. Indonesia Ecol Appl 29(1):e01810

    Google Scholar 

  • Campbell JE, Fourqurean JW (2018) Does nutrient availability regulate seagrass response to elevated CO2? Ecosystems 21(7):1269–1282

    CAS  Google Scholar 

  • Canuel EA, Cammer SS, McIntosh HA, Pondell CR (2012) Climate change impacts on the organic carbon cycle at the land-ocean interface. Annu Rev Earth Pl Sc 40:685–711

    CAS  Google Scholar 

  • Capooci M, Barba J, Seyfferth AL, Vargas R (2019) Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh. Sci Total Environ 686:1164–1172

    CAS  Google Scholar 

  • Chen CM (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Tec 57(3):359–377

    Google Scholar 

  • Chen DZ, Li ML, Zhang YY, Zhang LH, Tang JP, Wu H, Wang YP (2020) Effects of diatoms on erosion and accretion processes in saltmarsh inferred from field observations of hydrodynamic and sedimentary processes. Ecohydrology 13(8):e2246

    Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17:1111

    Google Scholar 

  • Chmura GL, Kellman L, van Ardenne L, Guntenspergen GR (2016) Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment. PLoS One 11(2):e0149937

    Google Scholar 

  • Choi YH, Wang Y (2004) Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochem Cy 18:GB4016

    Google Scholar 

  • Chu SN, Wang ZA, Gonneea ME, Kroeger KD, Ganju NK (2018) Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements. Mar Chem 206:7–18

    CAS  Google Scholar 

  • Clark JB, Long W, Hood RR (2020) A comprehensive estuarine dissolved organic carbon budget using an enhanced biogeochemical model. J Geophys Res-Biogeo 125(5):e2019JG005442

    CAS  Google Scholar 

  • Codden CJ, Snauffer AM, Mueller AV, Edwards CR, Thompson M, Tait Z, Stubbins A (2021) Predicting dissolved organic carbon concentration in a dynamic salt marsh creek via machine learning. Limnol Oceanogr-Meth 19(2):81–95

    CAS  Google Scholar 

  • Crosby SC, Sax DF, Palmer ME, Booth HS, Deegan LA, Bertness MD, Leslie HM (2016) Salt marsh persistence is threatened by predicted sea-level rise. Estuar Coast Shelf S 181:93–99

    Google Scholar 

  • Cuellar-Martinez T, Ruiz-Fernandez AC, Sanchez-Cabeza JA, Perez-Bernal LH, Sandoval-Gil J (2019) Relevance of carbon burial and storage in two contrasting blue carbon ecosystems of a north-east Pacific coastal lagoon. Sci Total Environ 675:581–593

    CAS  Google Scholar 

  • Cyronak T, Andersson AJ, D’Angelo S, Bresnahan P, Davidson C, Griffin A, Kindeberg T, Pennise J, Takeshita Y, White M (2018) Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: implications for ph buffering capacities. Estuar Coast 41(5):1282–1296

    CAS  Google Scholar 

  • D’Alpaos A, Lanzoni S, Marani M, Rinaldo A (2007) Landscape evolution in tidal embayments: modeling the interplay of erosion, sedimentation, and vegetation dynamics. J Geophys Res-Earth 112:F01008

    Google Scholar 

  • De Falco G, De Muro S, Batzella T, Cucco A (2011) Carbonate sedimentation and hydrodynamic pattern on a modern temperate shelf: the strait of Bonifacio (western Mediterranean). Estuar Coast Shelf S 93(1):14–26

    Google Scholar 

  • De Moya-Anegon F, Chinchilla-Rodriguez Z, Vargas-Quesada B, Corera-Alvarez E, Munoz-Fernandez FJ, Gonzalez-Molina A, Herrero-Solana V (2007) Coverage analysis of Scopus: a journal metric approach. Scientometrics 73(1):53–78

    Google Scholar 

  • Defazio D, Lockett A, Wright M (2009) Funding incentives, collaborative dynamics and scientific productivity: Evidence from the EU framework program. Res Policy 38(2):293–305

    Google Scholar 

  • Dennison WC (1987) Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat Bot 27(1):15–26

    Google Scholar 

  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res 133:285–296

    Google Scholar 

  • Drexler JZ, Davis MJ, Woo I, De La Cruz S (2020) Carbon sources in the sediments of a restoring vs. historically unaltered salt marsh. Estuar Coast 43(6):1345–1360

    CAS  Google Scholar 

  • Duarte CM (2017) Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences 14(2):301–310

    CAS  Google Scholar 

  • Duarte CM, Middelburg JJ, Caraco N (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2(1):1–8

    CAS  Google Scholar 

  • Egea LG, Jimenez-Ramos R, Hernandez I, Bouma TJ, Brun FG (2018) Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations. PLoS One 13(2):0192402

    Google Scholar 

  • Elschot K, Bouma TJ, Temmerman S, Bakker JP (2013) Effects of long-term grazing on sediment deposition and salt-marsh accretion rates. Estuar Coast Shelf S 133:109–115

    Google Scholar 

  • Enriquez S, Schubert N (2014) Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat Commun 5(1):1–12

    Google Scholar 

  • Fagherazzi S, Kirwan ML, Mudd SM, Guntenspergen GR, Temmerman S, D'Alpaos A, van de Koppel J, Rybczyk JM, Reyes E, Craft C, Clough J (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 50:RG1002

  • Ford H, Garbutt A, Duggan-Edwards M, Pages JF, Harvey R, Ladd C, Skov MW (2019) Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type. Biogeosciences 16(2):425–436

    Google Scholar 

  • Frankovich TA, Zieman JC (1994) Total epiphyte and epiphytic carbonate production on thalassia-testudinum across florida bay. B Mar Sci 54(3):679–695

    Google Scholar 

  • Friess DA, Richards DR, Phang VXH (2016) Mangrove forests store high densities of carbon across the tropical urban landscape of Singapore. Urban Ecosyst 19:795–810

    Google Scholar 

  • Friess DA et al (2023) Blue carbon science, management and policy across a tropical urban landscape. Landscape Urban Plan 230:104610

    Google Scholar 

  • Fu CC, Li Y, Zeng L, Zhang HB, Tu C, Zhou Q, Xiong KX, Wu JP, Duarte CM, Christie P, Luo YM (2021) Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biol 27(1):202–214

    CAS  Google Scholar 

  • Gaglianone G, Brandano M, Mateu-Vicens G (2017) The sedimentary facies of Posidonia oceanica seagrass meadows from the central Mediterranean Sea. Facies 63(4):1–21

    Google Scholar 

  • Galvagno M, Pisano V (2020) Building the genealogy of family business internationalization: a bibliometric mixed-method approach. Scientometrics 126(1):757–783

    Google Scholar 

  • Ge ZM, Guo HQ, Zhao B, Zhang C, Peltola HL, Zhang LQ (2016) Spatiotemporal patterns of the gross primary production in the salt marshes with rapid community change: a coupled modeling approach. Ecol Model 321:110–120

    CAS  Google Scholar 

  • Gorham C, Lavery P, Kelleway JJ, Salinas C, Serrano O (2020) Soil carbon stocks vary across geomorphic settings in Australian temperate tidal marsh ecosystems. Ecosystems 24:319–334

    Google Scholar 

  • Greiner JT, McGlathery KJ, Gunnell J, McKee BA (2013) Seagrass restoration enhances “blue carbon” sequestration in coastal waters. PLoS One 8(8):e72469

    CAS  Google Scholar 

  • Guerrero-Meseguer L, Cox TE, Sanz-Lazaro C, Schmid S, Enzor LA, Major K, Gazeau F, Cebrian J (2020) Does Ocean Acidification Benefit Seagrasses in a Mesohaline Environment? A Mesocosm Experiment in the Northern Gulf of Mexico. Estuar Coast 43(6):1377–1393

    CAS  Google Scholar 

  • Gutierrez JL, Jones CG, Ribeiro PD, Findlay SEG, Groffman PM (2018) Crab burrowing limits surface litter accumulation in a temperate salt marsh: implications for ecosystem functioning and connectivity. Ecosystems 21(5):1000–1012

    Google Scholar 

  • Hamilton SE, Friess DA (2018) Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat Clim Change 8(3):240–244

    CAS  Google Scholar 

  • Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J, Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11(2):333–346

    Google Scholar 

  • Himes-Cornell A, Pendleton L, Atiyah P (2018) Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosyst Serv 30:36–48

    Google Scholar 

  • Holdredge C, Bertness MD, Herrmann NC, Gedan KB (2010) Fiddler crab control of cordgrass primary production in sandy sediments. Mar Ecol Prog Ser 399:253–259

    CAS  Google Scholar 

  • Hu W, Li CH, Ye C, Wang J, Wei WW, Deng Y (2019) Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database. Ecol Model 410:108779

    CAS  Google Scholar 

  • Hu MJ, Sardans J, Yang XY, Penuelas J, Tong C (2020) Patterns and environmental drivers of greenhouse gas fluxes in the coastal wetlands of china: a systematic review and synthesis. Environ Res 186:109576

    CAS  Google Scholar 

  • Janousek CN, Buffington KJ, Guntenspergen GR, Thorne KM, Dugger BD, Takekawa JY (2017) Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes. Ecosystems 20(7):1296–1310

    CAS  Google Scholar 

  • Kauffman JB, Bernardino AF, Ferreira TO, Giovannoni LR, Gomes LED, Romero DJ, Jimenez LCZ, Ruiz F (2018) Carbon stocks of mangroves and salt marshes of the Amazon region. Brazil Biol Lett 14(9):20180208

    Google Scholar 

  • Kelaher BP, Coleman MA, Bishop MJ (2018) Ocean warming, but not acidification, accelerates seagrass decomposition under near-future climate scenarios. Mar Ecol Prog Ser 605:103–110

    CAS  Google Scholar 

  • Kelleway JJ, Saintilan N, Macreadie PI, Ralph PJ (2016) Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems 19(5):865–880

    CAS  Google Scholar 

  • Kelleway JJ, Saintilan N, Macreadie PI, Skilbeck CG, Zawadzki A, Ralph PJ (2016) Seventy years of continuous encroachment substantially increases “blue carbon” capacity as mangroves replace intertidal salt marshes. Global Change Biol 22(3):1097–1109

    Google Scholar 

  • Kirwan ML, Guntenspergen GR, D’Alpaos A, Morris JT, Mudd SM, Temmerman S (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37(23):L23401

    Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89(2):128–137

    Google Scholar 

  • Kusmana C, Hidayat T, Tiryana T, Istomo OR (2018) Allometric models for above- and below-ground biomass of Sonneratia spp. Glob Ecol Conserv 15:e00417

    Google Scholar 

  • Lee SY, Hamilton S, Barbier EB, Primavera J, Lewis RR (2019) Better restoration policies are needed to conserve mangrove ecosystems. Nat Ecol Evol 3(6):870–872

    Google Scholar 

  • Lester SE, Dubel AK, Hernan G, McHenry J, Rassweiler A (2020) Spatial Planning Principles for Marine Ecosystem Restoration. Front Mar Sci 7:328

    Google Scholar 

  • Lewis CJE, Young MA, Ierodiaconou D, Baldock JA, Hawke B, Sanderman J, Carnell PE, Macreadie PI (2020) Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia. Biogeosciences 17(7):2041–2059

    CAS  Google Scholar 

  • Liao CZ, Luo YQ, Fang CM, Chen JK, Li B (2008) Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia 156(3):589–600

    Google Scholar 

  • Liu JE, Han RM, Su HR, Wu YP, Zhang LM, Richardson CJ, Wang GX (2017) Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China. Ecol Eng 106:132–139

    Google Scholar 

  • Liu BQ, D’Sa EJ, Joshi I (2019) Multi-decadal trends and influences on dissolved organic carbon distribution in the Barataria Basin, Louisiana from in-situ and Landsat/MODIS observations. Remote Sens Environ 228:183–202

    Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

    Google Scholar 

  • Lovelock CE, Duarte CM (2019) Dimensions of blue carbon and emerging perspectives. Biol Letters 15(3):20180781

    Google Scholar 

  • Lovelock CE, Reef R (2020) Variable impacts of climate change on blue carbon. One Earth 3(2):195–211

    Google Scholar 

  • Lucas R, De Kerchove RV, Otero V, Lagomasino D, Fatoyinbo L, Omar H, Satyanarayana B, Dahdouh-Guebas F (2020) Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens Environ 237:111543

    Google Scholar 

  • Lunstrum A, Chen LZ (2014) Soil carbon stocks and accumulation in young mangrove forests. Soil Biol Biochem 75:223–232

    CAS  Google Scholar 

  • Luo M, Huang JF, Zhu WF, Tong C (2019) Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia 827(1):31–49

    CAS  Google Scholar 

  • Macreadie PI, Nielsen DA, Kelleway JJ, Atwood TB, Seymour JR, Petrou K, Connolly RM, Thomson ACG, Trevathan-Tackett SM, Ralph PJ (2017) Can we manage coastal ecosystems to sequester more blue carbon? Front Ecol Environ 15(4):206–213

    Google Scholar 

  • Macreadie PI, Serrano O, Maher DT, Duarte CM, Beardall J (2017) Addressing calcium carbonate cycling in blue carbon accounting. Limnol Oceanogr Lett 2(6):195–201

    Google Scholar 

  • Macreadie PI et al (2019) The future of blue carbon science. Nat Commun 10(1):3998

    Google Scholar 

  • Macreadie PI, Costa MDP, Atwood TB, Friess DA, Kelleway JJ, Kennedy H, Lovelock CE, Serrano O, Duarte CM (2021) Blue carbon as a natural climate solution. Nat Rev Earth Env 2(12):826–839

    CAS  Google Scholar 

  • Macy A, Osland MJ, Cherry JA, Cebrian J (2020) Changes in ecosystem nitrogen and carbon allocation with black mangrove (Avicennia germinans) encroachment into Spartina alterniflora salt marsh. Ecosystems 24(5):1007–1023

    Google Scholar 

  • Mazarrasa I, Marba N, Krause-Jensen D, Kennedy H, Santos R, Lovelock CE, Duarte CM (2019) Decreasing carbonate load of seagrass leaves with increasing latitude. Aquat Bot 159:103147

    Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9(10):552–560

    Google Scholar 

  • Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83(10):2869–2877

    Google Scholar 

  • Mudd SM, Howell SM, Morris JT (2009) Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar Coast Shelf S 82(3):377–389

    CAS  Google Scholar 

  • Nahrawi H, Leclerc MY, Pennings S, Zhang G, Singh N, Pahari R (2020) Impact of tidal inundation on the net ecosystem exchange in daytime conditions in a salt marsh. Agr Forest Meteorol 294:108133

    Google Scholar 

  • Najjar RG et al (2018) Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America. Global Biogeochem Cy 32(3):389–416

    CAS  Google Scholar 

  • Nellemann C, Corcoran E (2009) Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. In: Nellemann C, Corcoran E, Duarte C M, Valdés L, De Young C, Fonseca L, Grims-ditch G, eds. UNEP/Earthprint

  • Nolte S, Esselink P, Bakker JP, Smit C (2015) Effects of livestock species and stocking density on accretion rates in grazed salt marshes. Estuar Coast Shelf S 152:109–115

    Google Scholar 

  • O’Connor JJ, Fest BJ, Sievers M, Swearer SE (2020) Impacts of land management practices on blue carbon stocks and greenhouse gas fluxes in coastal ecosystems-A meta-analysis. Global Change Biol 26(3):1354–1366

    Google Scholar 

  • Odum WE, Heald EJ (1972) Trophic Analyses of an Estuarine Mangrove Community. B Mar Sci 22(3):671–738

    Google Scholar 

  • Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    CAS  Google Scholar 

  • Orth RJ, Heck KL, Vanmontfrans J (1984) Faunal communities in seagrass beds-a review of the influence of plant structure and prey characteristics on predator prey relationships. Estuaries 7(4a):339–350

    Google Scholar 

  • Ortiz-Llorente MJ, Alvarez-Cobelas M (2012) Comparison of biogenic methane emissions from unmanaged estuaries, lakes oceans, rivers and wetlands. Atmos Environ 59:328–337

    CAS  Google Scholar 

  • Ouyang X, Lee SY (2014) Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11(18):5057–5071

    Google Scholar 

  • Page HM (1997) Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuar Coast Shelf S 45(6):823–834

    Google Scholar 

  • Palinkas CM, Engelhardt KAM (2019) Influence of inundation and suspended-sediment concentrations on spatiotemporal sedimentation patterns in a tidal freshwater marsh. Wetlands 39(3):507–520

    Google Scholar 

  • Pereira FRD, Kampel M, Soares MLG, Estrada GCD, Bentz C, Vincent G (2018) Reducing uncertainty in mapping of mangrove aboveground biomass using airborne discrete return lidar data. Remote Sens-Basel 10(4):637

    Google Scholar 

  • Perry CT, Beavington-Penney SJ (2005) Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island. Mozambique Sediment Geol 174(3–4):161–176

    CAS  Google Scholar 

  • Pfauder A, Zimmer M (2005) Intermediate tidal stress promotes the detritivore-mediated decomposition of Spartina litter. Eur J Soil Biol 41(3–4):135–141

    Google Scholar 

  • Ralph PJ, Durako MJ, Enriquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350(1–2):176–193

    Google Scholar 

  • Ravaglioli C, Lardicci C, Pusceddu A, Arpe E, Bianchelli S, Buschi E, Bulleri F (2020) Ocean acidification alters meiobenthic assemblage composition and organic matter degradation rates in seagrass sediments. Limnol Oceanogr 65(1):37–50

    CAS  Google Scholar 

  • Ray R, Miyajima T, Watanabe A, Yoshikai M, Ferrera CM, Orizar I, Nakamura T, San Diego-McGlone ML, Herrera EC, Nadaoka K (2021) Dissolved and particulate carbon export from a tropical mangrove-dominated riverine system. Limnol Oceanogr 66:3944–3962

    CAS  Google Scholar 

  • Reef R, Spencer T, Moller I, Lovelock CE, Christie EK, McIvor AL, Evans BR, Tempest JA (2017) The effects of elevated CO2 and eutrophication on surface elevation gain in a European salt marsh. Global Change Biol 23(2):881–890

    Google Scholar 

  • Richards FJ (1934) The salt marshes of the dovey estuary. IV. The rates of vertical accretion, horizontal extension and scarp erosion. Ann Bot 48(189):225–259

    Google Scholar 

  • Rippel TM, Mooring EQ, Tomasula J, Wimp GM (2020) Habitat edge effects decrease litter accumulation and increase litter decomposition in coastal salt marshes. Landsc Ecol 35(10):2179–2190

    Google Scholar 

  • Rosentreter JA, Maher DT, Erler DV, Murray RH, Eyre BD (2018) Methane emissions partially offset “blue carbon” burial in mangroves. Sci Adv 4(6):eaao4985

    Google Scholar 

  • Rozema J, Dorel F, Janissen R, Lenssen G, Broekman R, Arp W, Drake BG (1991) Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt-marsh grass species. Aquat Bot 39(1–2):45–55

    Google Scholar 

  • Ruiz-Fernandez AC, Carnero-Bravo V, Sanchez-Cabeza JA, Perez-Bernal LH, Amaya-Monterrosa OA, Bojorquez-Sanchez S, Lopez-Mendoza PG, Cardoso-Mohedano JG, Dunbar RB, Mucciarone DA, Marmolejo-Rodriguez AJ (2018) Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Sci Total Environ 630:1628–1640

    CAS  Google Scholar 

  • Saderne V et al (2019) Role of carbonate burial in blue carbon budgets. Nat Commun 10:1106

    CAS  Google Scholar 

  • Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biol 20(1):147–157

    Google Scholar 

  • Sasmito SD, Taillardat P, Clendenning JN, Cameron C, Friess DA, Murdiyarso D, Hutley LB (2019) Effect of land-use and land-cover change on mangrove blue carbon: a systematic review. Global Change Biol 25(12):4291–4302

    Google Scholar 

  • Saunders MI, Leon J, Phinn SR, Callaghan DP, O’Brien KR, Roelfsema CM, Lovelock CE, Lyons MB, Mumby PJ (2013) Coastal retreat and improved water quality mitigate losses of seagrass from sea level rise. Global Change Biol 19(8):2569–2583

    Google Scholar 

  • Schiebel HN, Peri F, Chen RF (2020) Dissolved organic matter export from surface sediments of a New England salt marsh. Wetlands 40(4):693–705

    Google Scholar 

  • Schuerch M, Dolch T, Bisgwa J, Vafeidis AT (2018) Changing sediment dynamics of a mature backbarrier salt marsh in response to sea-level rise and storm events. Front Mar Sci 5:155

    Google Scholar 

  • Silliman BR, Layman CA, Geyer K, Zieman JC (2004) Predation by the black-clawed mud crab, Panopeus herbstii, in Mid-Atlantic salt marshes: further evidence for top-down control of marsh grass production. Estuaries 27(2):188–196

    Google Scholar 

  • Sippo JZ, Sanders CJ, Santos IR, Jeffrey LC, Call M, Harada Y, Maguire K, Brown D, Conrad SR, Maher DT (2020) Coastal carbon cycle changes following mangrove loss. Limnol Oceanogr 65(11):2642–2656

    CAS  Google Scholar 

  • Sitoe AA, Mandlate LJC, Guedes BS (2014) Biomass and carbon stocks of Sofala Bay mangrove forests. Forests 5(8):1967–1981

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

  • Soper FM, MacKenzie RA, Sharma S, Cole TG, Litton CM, Sparks JP (2019) Non-native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Global Change Biol 25(12):4315–4326

    Google Scholar 

  • Stewart-Sinclair PJ, Purandare J, Bayraktarov E, Waltham N, Reeves S, Statton J, Sinclair EA, Brown BM, Shribman ZI, Lovelock CE (2020) Blue Restoration-Building Confidence and Overcoming Barriers. Front Mar Sci 7:541700

    Google Scholar 

  • Taillardat P, Friess DA, Lupascu M (2018) Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol Letters 14(10):20180251

    Google Scholar 

  • Tang JW, Ye SF, Chen XC, Yang HL, Sun XH, Wang FM, Wen Q, Chen SB (2018) Coastal blue carbon: Concept, study method, and the application to ecological restoration. Sci China Earth Sci 61(6):637–646

    CAS  Google Scholar 

  • Tang H, Nolte S, Jensen K, Yang Z, Wu J, Mueller P (2020) Grazing mediates soil microbial activity and litter decomposition in salt marshes. Sci Total Environ 720:137559

    CAS  Google Scholar 

  • Teal JM (1962) Energy flow in the salt marsh ecosystem of Georgia. Ecology 43(4):614–624

    Google Scholar 

  • Thorhaug A, Poulos HM, Lopez-Portillo J, Ku TCW, Berlyn GP (2017) Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Sci Total Environ 605:626–636

    Google Scholar 

  • Tomassetti L, Benedetti A, Brandano M (2016) Middle Eocene seagrass facies from Apennine carbonate platforms (Italy). Sediment Geol 335:136–149

    Google Scholar 

  • Tong C, Zhang LH, Wang WQ, Gauci V, Marrs R, Liu BG, Jia RX, Zeng CS (2011) Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environ Res 111(7):909–916

    CAS  Google Scholar 

  • Tranfield D, Denyer D, Smart P (2003) Towards a methodology for developing evidence-informed management knowledge by means of systematic review. Brit J Manage 14(3):207–222

    Google Scholar 

  • Trevathan-Tackett SM, Brodersen KE, Macreadie PI (2020) Effects of elevated temperature on microbial breakdown of seagrass leaf and tea litter biomass. Biogeochemistry 151:171–185

    CAS  Google Scholar 

  • Trifunovic B, Vázquez-Lule A, Capooci M, Seyfferth AL, Moffat C, Vargas R (2020) Carbon dioxide and methane emissions from temperate salt marsh tidal creek. J Geophys Res-Biogeo 125(8):e2019JG005558

    CAS  Google Scholar 

  • Van Eck N, Waltman L (2009) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84(2):523–538

    Google Scholar 

  • Van Dam BR, Zeller MA, Lopes C, Smyth AR, Bottcher ME, Osburn CL, Zimmerman T, Profrock D, Fourqurean JW, Thomas H (2021) Calcification-driven CO2 emissions exceed “Blue Carbon” sequestration in a carbonate seagrass meadow. Sci Adv 7(51):eabj1372

    Google Scholar 

  • Van Eck NJ, Waltman L (2014) Visualizing bibliometric networks. In: Ding Y, Rousseau R, Wolfram D (eds) Measuring scholarly impact: methods and practice. Springer International Publishing, Cham, pp 285–320

  • Vaughn DR, Bianchi TS, Shields MR, Kenney WF, Osborne TZ (2020) Increased organic carbon burial in Northern Florida mangrove-salt marsh transition zones. Global Biogeochem Cy 34(5):e2019GB006334

    CAS  Google Scholar 

  • Vinh TV, Marchand C, Linh TVK, Vinh DD, Allenbachd M (2019) Allometric models to estimate above-ground biomass and carbon stocks in Rhizophora apiculata tropical managed mangrove forests (Southern Viet Nam). Forest Ecol Manag 434:131–141

    Google Scholar 

  • Vivanco L, Irvine IC, Martiny JBH (2015) Nonlinear responses in salt marsh functioning to increased nitrogen addition. Ecology 96(4):936–947

    Google Scholar 

  • Vizzini S, Apostolaki ET, Ricevuto E, Polymenakou P, Mazzola A (2019) Plant and sediment properties in seagrass meadows from two Mediterranean CO2 vents: implications for carbon storage capacity of acidified oceans. Mar Environ Res 146:101–108

    CAS  Google Scholar 

  • Wallin JA (2005) Bibliometric methods: Pitfalls and possibilities. Basic Clin Pharmacol 97(5):261–275

    CAS  Google Scholar 

  • Wang ZA, Cai WJ (2004) Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): a marsh CO2 pump. Limnol Oceanogr 49(2):341–354

    CAS  Google Scholar 

  • Wang ZA, Kroeger KD, Ganju NK, Gonneea ME, Chu SN (2016) Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol Oceanogr 61(5):1916–1931

    Google Scholar 

  • Wang XX, Jiang DB, Lang XM (2017) Future extreme climate changes linked to global warming intensity. Sci Bull 62(24):1673–1680

    Google Scholar 

  • Wang F, Kroeger KD, Gonneea ME, Pohlman JW, Tang J (2019) Water salinity and inundation control soil carbon decomposition during salt marsh restoration: an incubation experiment. Ecol Evol 9(4):1911–1921

    Google Scholar 

  • Ward RD (2020) Carbon sequestration and storage in Norwegian Arctic coastal wetlands: impacts of climate change. Sci Total Environ 748:141343

    CAS  Google Scholar 

  • Wozniak AS, Roman CT, Wainright SC, McKinney RA, James-Pirri MJ (2006) Monitoring food web changes in tide-restored salt marshes: a carbon stable isotope approach. Estuar Coast 29(4):568–578

    Google Scholar 

  • Wu JP, Zhang HB, Pan YW, Krause-Jensen D, He ZG, Fan W, Xiao X, Chung I, Marba N, Serrano O, Rivkin RB, Zheng YH, Gu JL, Zhang XJ, Zhang ZH, Zhao P, Qiu WF, Chen GC, Duarte CM (2020) Opportunities for blue carbon strategies in China. Ocean Coast Manage 194:105241

    Google Scholar 

  • Xue L, Li XZ, Yan ZZ, Zhang Q, Ding WH, Huang X, Tian B, Ge Z, Yin Q (2018) Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion. Hydrobiologia 806(1):47–65

    Google Scholar 

  • Yan ZZ, Xu Y, Zhang QQ, Qu JG, Li XZ (2019) Decomposition of Spartina alterniflora and concomitant metal release dynamics in a tidal environment. Sci Total Environ 663:867–877

    CAS  Google Scholar 

  • Ye N, Kueh TB, Hou LS, Liu YX, Yu H (2020) A bibliometric analysis of corporate social responsibility in sustainable development. J Clean Prod 272:122679

    Google Scholar 

  • Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX (2015) Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biol 21(4):1567–1580

    Google Scholar 

  • Yuan JJ, Liu DY, Ji Y, Xiang J, Lin YX, Wu M, Ding WX (2019) Spartina alterniflora invasion drastically increases methane production potential by shifting methanogenesis from hydrogenotrophic to methylotrophic pathway in a coastal marsh. J Ecol 107(5):2436–2450

    CAS  Google Scholar 

  • Zhai JX, Yan GX, Cong L, Wu YA, Dai LY, Zhang ZM, Zhang MX (2020) Assessing the effects of salinity and inundation on halophytes litter breakdown in Yellow River Delta wetland. Ecol Indic 115:106405

    CAS  Google Scholar 

  • Zhang M, Ustin SL, Rejmankova E, Sanderson EW (1997) Monitoring Pacific coast salt marshes using remote sensing. Ecol Appl 7(3):1039–1053

    Google Scholar 

  • Zhi W, Yuan L, Ji GD, Liu YS, Cai Z, Chen X (2015) A bibliometric review on carbon cycling research during 1993–2013. Environ Earth Sci 74(7):6065–6075

    Google Scholar 

  • Zhong QC, Du Q, Gong JN, Zhang C, Wang KY (2013) Effects of in situ experimental air warming on the soil respiration in a coastal salt marsh reclaimed for agriculture. Plant Soil 371(1–2):487–502

    CAS  Google Scholar 

  • Zoccarato C, Teatini P (2017) Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Adv Water Resour 110:107–119

    Google Scholar 

  • Zupic I, Cater T (2015) Bibliometric methods in management and organization. Organ Res Methods 18(3):429–472

    Google Scholar 

Download references

Funding

This work was supported by Key Program of National Natural Science Foundation of China (42130402), Key Basic Research Projects of Shenzhen, China (GXWD20201231165807007-20200812142216001), and Key Platform and Scientific Research Projects of Guangdong Provincial Education Department (2020KCXTD006).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Shuo Yin, Junjian Wang, and Hui Zeng. The first draft of the manuscript was written by Shuo Yin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Zeng.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

We affirm that all authors have participated in the research work.

Consent for publication

All authors approved the final version of the paper to be published.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 628 KB)

Supplementary file2 (XLSX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, S., Wang, J. & Zeng, H. A bibliometric study on carbon cycling in vegetated blue carbon ecosystems. Environ Sci Pollut Res 30, 74691–74708 (2023). https://doi.org/10.1007/s11356-023-27816-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-27816-2

Keywords

Navigation