Skip to main content
Log in

Experimental study on volatile sulfur compound inhibition using a single-chamber membrane-free microbial electrolysis cell

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Odor emissions from sewer systems and wastewater treatment plants have attracted much attention due to the potential negative effects on human health. A single-chamber membrane-free microbial electrolysis cell was proposed for the removal of sulfides in a sewer system. The feasibility of the use of volatile sulfur compounds and their removal efficiency in liquid and headspace gas phases were investigated using synthetic wastewater with real sewer sediment and Ru/Ir-coated titanium electrodes. The results indicate that hydrogen sulfide and volatile organic sulfur compounds were effectively inhibited in the liquid phase upon electrochemical treatment at current densities of 1.55, 2.06, and 2.58 mA/cm2, and their removal rates reached up to 86.2–100%, except for dimethyl trisulfide, the amount of which increased greatly at 1.55 mA/cm2. In addition, the amount of volatile sulfur compounds in the headspace decreased greatly; however, the total theoretical odor concentration was still high, and methanethiol and ethanethiol greatly contributed to the total strength of the odor concentration due to their low odor threshold concentrations. The major pathway for sulfide removal in the single-chamber membrane-free microbial electrolysis cell is biotic oxidation, the removal rate of which was 0.4–0.5 mg/min, 4–5 times that of indirect electrochemical oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anglada N, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84(12):1747–1755

    CAS  Google Scholar 

  • Badr K, Bahmani M, Jahanmiri A, Mowla D (2014) Biological removal of methanethiol from gas and water streams by using Thiobacillus thioparus: investigation of biodegradability and optimization of sulphur production. Environ Technol 35(14):1729–1735

    CAS  Google Scholar 

  • Baird RB, Bridgewater L, Clesceri LS, Eaton AD, Rice EW (2012) Standard methods for the examination of water and wastewater. American Public Health Association

  • Bak F, Finster K, Rothfu F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch Microbiol 157(6):529–534

    CAS  Google Scholar 

  • Blanco-Rodríguez A, Camara VF, Campo F, Becherán L, Durán A, Vieira VD, de Melo H, Garcia-Ramirez AR (2018) Development of an electronic nose to characterize odours emitted from different stages in a wastewater treatment plant. Water Res 134:92–100

    Google Scholar 

  • Cain WS, Shoaf CR, Velasquez SF, Selevan S, Victery W (1992) Reference guide to odor thresholds for hazardous air pollutants listed in the Clean Air Act amendments of 1990. Acta Anaesthesiol Belg 61(3):119–122

    Google Scholar 

  • Chang Y, Chang Y, Hung C, Lee J, Liao H, Chou H (2014) Microbial community analysis of anaerobic bio-corrosion in different ORP profiles. Int Biodeterior Biodegradation 95:93–101

    CAS  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Google Scholar 

  • Chen D, Szostak P (2013) Factor analysis of H2S emission at a wastewater lift station: a case study. Environ Monit Assess 185(4):3551–3560

    CAS  Google Scholar 

  • Chen P, Tseng Y, Chuang Y, Chen J (2015) Determination of volatile organic compounds in water using headspace knotted hollow fiber microextraction. J Chromatogr A 1395:41–47

    CAS  Google Scholar 

  • Chen M, Yao X, Ma R, Song Q, Long Y, He R (2017) Methanethiol generation potential from anaerobic degradation of municipal solid waste in landfills. Environ Sci Pollut Res 24(30):23992–24001

    CAS  Google Scholar 

  • Chung BS, Ryu SH, Park M, Jeon Y, Chung YR, Jeon CO (2007) Hydrogenophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57(5):1126–1130

    CAS  Google Scholar 

  • Cytryn E, van Rijn J, Schramm A, Gieseke A, de Beer D, Minz D (2005) Identification of bacteria potentially responsible for oxic and anoxic sulfide oxidation in biofilters of a recirculating mariculture system. Appl Environ Microbiol 71(10):6134–6141

    CAS  Google Scholar 

  • De Bruyn WJ, Swartz E, Hu JH, Shorter JA, Kolb CE (1995) Henry’s law solubilities and Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements. J Geophys Res-Atmos 100(D4):7245–7251

    CAS  Google Scholar 

  • Devai I, DeLaune RD (1999) Emission of reduced malodorous sulfur gases from wastewater treatment plants. Water Environ Res 71(2):203–208

    CAS  Google Scholar 

  • Dutta PK, Rabaey K, Yuan Z, Rozendal RA, Keller J (2010) Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Res 44(8):2563–2571

    CAS  Google Scholar 

  • Fang J, Yang N, Cen D, Shao L, He P (2012) Odor compounds from different sources of landfill: characterization and source identification. Waste Manag 32(7):1401–1410

    CAS  Google Scholar 

  • Fatoki OS (1997) Biomethylation in the natural environment: a review. S Afr J Sci 93:366–370

    CAS  Google Scholar 

  • Feilberg A, Liu D, Adamsen APS, Hansen MJ, Jonassen KEN (2010) Odorant emissions from intensive pig production measured by online proton-transfer-reaction mass spectrometry. Environ Sci Technol 44(15):5894–5900

    CAS  Google Scholar 

  • Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392(1):145–156

    CAS  Google Scholar 

  • Gabriel D, Deshusses MA (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc Natl Acad Sci 100(11):6308–6312

  • Ganigue R, Gutierrez O, Rootsey R, Yuan Z (2011) Chemical dosing for sulfide control in Australia: an industry survey. Water Res 45(19):6564–6574

    CAS  Google Scholar 

  • Gong Y, Ebrahim A, Feist AM, Embree M, Zhang T, Lovley D, Zengler K (2012) Sulfide-driven microbial electrosynthesis. Environ Sci Technol 47(1):568–573

    Google Scholar 

  • Graff A, Stubner S (2003) Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Syst Appl Microbiol 26(3):445–452

    CAS  Google Scholar 

  • Gu T, Tan P, Zhou Y, Zhang Y, Zhu D, Zhang T (2019) Characteristics and mechanism of dimethyl trisulfide formation during sulfide control in sewer by adding various oxidants. Sci Total Environ 673:719–725

    CAS  Google Scholar 

  • Gutierrez O, Mohanakrishnan J, Sharma KR, Meyer RL, Keller J, Yuan Z (2008) Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Res 42(17):4549–4561

    CAS  Google Scholar 

  • Gutierrez O, Sudarjanto G, Ren G, Ganigué R, Jiang G, Yuan Z (2014) Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Water Res 48:569–578

    CAS  Google Scholar 

  • Ito T, Miyaji T, Nakagawa T, Tomizuka N (2007) Degradation of dimethyl disulfide by Pseudomonas fluorescens strain 76. Biosci Biotechnol Biochem 71(2):366–370

    CAS  Google Scholar 

  • Jana S, Sarkar U (2018) Alkaline functionalization of granular activated carbon for the removal of volatile organo sulphur compounds (VOSCs) generated in sewage treatment plants. J Environ Chem Eng 6(2):3510–3519

    CAS  Google Scholar 

  • Jiang G, Sun J, Sharma KR, Yuan Z (2015) Corrosion and odor management in sewer systems. Curr Opin Biotechnol 33:192–197

    Google Scholar 

  • Kilburn KH, Thrasher JD, Gray MR (2010) Low-level hydrogen sulfide and central nervous system dysfunction. Toxicol Ind Health 26(7):387–405

    CAS  Google Scholar 

  • Kodama Y, Watanabe K (2004) Sulfuricurvum kujiense gen. nov., sp. nov., a facultatively anaerobic, chemolithoautotrophic, sulfur-oxidizing bacterium isolated from an underground crude-oil storage cavity. Int J Syst Evol Microbiol 54(6):2297–2300

    CAS  Google Scholar 

  • Kristiana I, Heitz A, Joll C, Sathasivan A (2010) Analysis of polysulfides in drinking water distribution systems using headspace solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr A 1217(38):5995–6001

    CAS  Google Scholar 

  • Lebrero R, Bouchy L, Stuetz R, Muñoz R (2011) Odor assessment and management in wastewater treatment plants: a review. Crit Rev Environ Sci Technol 41(10):915–950

    Google Scholar 

  • Lee D, Liu X, Weng H (2014) Sulfate and organic carbon removal by microbial fuel cell with sulfate-reducing bacteria and sulfide-oxidising bacteria anodic biofilm. Bioresour Technol 156:14–19

    CAS  Google Scholar 

  • Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25(5):452–463

    CAS  Google Scholar 

  • Liang S, Zhang L, Jiang F (2016) Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage. Water Res 100:421–428

    CAS  Google Scholar 

  • Liang Z, Zhang L, Wu D, Chen G, Jiang F (2019) Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong. Water Res 154:94–103

    CAS  Google Scholar 

  • Lin H, Wu X, Miller C, Zhu J (2013) Improved performance of microbial fuel cells enriched with natural microbial inocula and treated by electrical current. Biomass Bioenergy 54:170–180

    CAS  Google Scholar 

  • Lin H, Kustermans C, Vaiopoulou E, Prévoteau A, Rabaey K, Yuan Z, Pikaar I (2017) Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers. Water Res 118:114–120

    CAS  Google Scholar 

  • Liu H, Hu H, Chignell J, Fan Y (2010) Microbial electrolysis: novel technology for hydrogen production from biomass. Biofuels 1(1):129–142

    Google Scholar 

  • Liu Y, Tugtas AE, Sharma KR, Ni B, Yuan Z (2016) Sulfide and methane production in sewer sediments: field survey and model evaluation. Water Res 89:142–150

    CAS  Google Scholar 

  • Lomans BP, Smolders A, Intven LM, Pol A, Op D, Drift CVD (1997) Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 63(12):4741–4747

    CAS  Google Scholar 

  • Luo H, Fu S, Liu G, Zhang R, Bai Y, Luo X (2014) Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells. Bioresour Technol 167:462–468

    CAS  Google Scholar 

  • Mathews ER, Wood JL, Phillips D, Billington N, Barnett D, Franks AE (2020) Town-scale microbial sewer community and H2S emissions response to common chemical and biological dosing treatments. J Environ Sci 87:133–148

    Google Scholar 

  • McClenny, W.A. and Holdren, M.W. (1999) Compendium method TO-15-EPA

  • Michaelidou U, ter Heijne A, Euverink GJW, Hamelers HVM, Stams AJM, Geelhoed JS (2011) Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Appl Environ Microbiol 77(3):1069–1075

    CAS  Google Scholar 

  • Mohanakrishnan J, Gutierrez O, Sharma KR, Guisasola A, Werner U, Meyer RL, Keller J, Yuan Z (2009) Impact of nitrate addition on biofilm properties and activities in rising main sewers. Water Res 43(17):4225–4237

    CAS  Google Scholar 

  • Montuschi P, Mores N, Trové A, Mondino C, Barnes PJ (2013) The electronic nose in respiratory medicine. Respiration 85(1):72–84

    Google Scholar 

  • Muezzinoglu A (2003) A study of volatile organic sulfur emissions causing urban odors. Chemosphere 51(4):245–252

    CAS  Google Scholar 

  • Nielsen ME, Wu DM, Girguis PR, Reimers CE (2009) Influence of substrate on electron transfer mechanisms in chambered benthic microbial fuel cells. Environ Sci Technol 43(22):8671–8677

    CAS  Google Scholar 

  • OSHA OSHA (2012) OSHATABLE Z-1 limits for air contaminants (29 CFR 1910.1000). Occupational noise exposure. Federal Register, Washington, DC

    Google Scholar 

  • Pikaar I, Rozendal RA, Yuan Z, Rabaey K (2011) Electrochemical caustic generation from sewage. Electrochem Commun 13(11):1202–1204

    CAS  Google Scholar 

  • Pikaar I, Li E, Rozendal RA, Yuan Z, Keller J, Rabaey K (2012) Long-term field test of an electrochemical method for sulfide removal from sewage. Water Res 46(9):3085–3093

    CAS  Google Scholar 

  • Pikaar I, Likosova EM, Freguia S, Keller J, Rabaey K, Yuan Z (2015) Electrochemical abatement of hydrogen sulfide from waste streams. Crit Rev Environ Sci Technol 45(14):1555–1578

    CAS  Google Scholar 

  • Pikaar I, Flugen M, Lin H, Salehin S, Li J, Donose BC, Dennis PG, Bethke L, Johnson I, Rabaey K, Yuan Z (2019) Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. Water Res 167:115032

    CAS  Google Scholar 

  • Rabaey K, Van de Sompel K, Maignien L, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Pham HT, Vermeulen J, Verhaege M, Lens P, Verstraete W (2006) Microbial fuel cells for sulfide removal. Environ Sci Technol 40(17):5218–5224

    CAS  Google Scholar 

  • Rago L, Cristiani P, Villa F, Zecchin S, Colombo A, Cavalca L, Schievano A (2017) Influences of dissolved oxygen concentration on biocathodic microbial communities in microbial fuel cells. Bioelectrochemistry 116:39–51

    CAS  Google Scholar 

  • RajamÄki T, Arnold M, Venelampi O, Vikman M, RÄsÄnen J, Vaara MI (2005) An electronic nose and indicator volatiles for monitoring of the composting process. Water Air Soil Pollut 162(1–4):71–87

    Google Scholar 

  • Rajbansi B, Sarkar U, Hobbs SE (2014) Hazardous odor markers from sewage wastewater: a step towards simultaneous assessment, dearomatization and removal. J Taiwan Inst Chem Eng 45(4):1549–1557

    CAS  Google Scholar 

  • Rajeshwar K (1994) Photoelectrochemistry and the environment. J Appl Electrochem 25(12):1067–1082

    Google Scholar 

  • Rao NN, Somasekhar KM, Kaul SN, Szpyrkowicz L (2001) Electrochemical oxidation of tannery wastewater. J Chem Technol Biotechnol 76(11):1124–1131

    CAS  Google Scholar 

  • Reimers CE, Stecher HA, Westall JC, Alleau Y, Howell KA, Soule L, White HK, Girguis PR (2007) Substrate degradation kinetics, microbial diversity, and current efficiency of microbial fuel cells supplied with marine plankton. Appl Environ Microbiol 73(21):7029–7040

    CAS  Google Scholar 

  • Rudelle EA, Vollertsen J, Hvitved-Jacobsen T, Nielsen AH (2013) Kinetics of aerobic oxidation of volatile sulfur compounds in wastewater and biofilm from sewers. Water Sci Technol 68(11):2330–2336

    CAS  Google Scholar 

  • Sander R, Bottenheim J (2012) A compilation of tropospheric measurements of gas-phase and aerosol chemistry in polar regions. Earth Syst Sci Data 4(1):215–282

    Google Scholar 

  • Shammay A, Evanson IEJ, Stuetz RM (2019) Selection framework for the treatment of sewer network emissions. J Environ Manag 249:109305

    CAS  Google Scholar 

  • Sivret EC, Wang B, Parcsi G, Stuetz RM (2016) Prioritisation of odorants emitted from sewers using odour activity values. Water Res 88:308–321

    CAS  Google Scholar 

  • Sivret EC, Le-Minh N, Wang B, Wang X, Stuetz RM (2017) Dynamics of volatile sulfur compounds and volatile organic compounds in sewer headspace air. J Environ Eng 143(2):04016080

  • Sun M, Mu ZX, Chen YP, Sheng GP, Liu XW, Chen YZ, Ma F (2009) Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell. Environ Sci Technol 43(9):3372–3377

    CAS  Google Scholar 

  • Sun M, Tong ZH, Sheng GP, Chen YZ, Zhang F, Mu ZX, Wei L (2010) Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. Biosens Bioelectron 26(2):470–476

    CAS  Google Scholar 

  • Sun Z, Cheng Z, Wang L, Lou Z, Zhu N, Zhou X, Feng L (2017) The typical MSW odorants identification and the spatial odorants distribution in a large-scale transfer station. Environ Sci Pollut Res 24(8):7705–7713

    CAS  Google Scholar 

  • Sun J, Yang J, Liu Y, Guo M, Wen Q, Sun W, Yao J, Li Y, Jiang F (2019) Magnetically-mediated regeneration and reuse of core-shell Fe0@ FeIII granules for in-situ hydrogen sulfide control in the river sediments. Water Res 157:621–629

    CAS  Google Scholar 

  • Tan C, Wei H, Ao J, Long G, Peng J (2016) Inclusion of konjac flour in the gestation diet changes the gut microbiota, alleviates oxidative stress, and improves insulin sensitivity in sows. Appl Environ Microbiol 82(19):5899–5909

    CAS  Google Scholar 

  • Ueno H, Amano S, Merecka B, Kośmider J (2009) Difference in the odor concentrations measured by the triangle odor bag method and dynamic olfactometry. Water Sci Technol 59(7):1339–1342

  • Varlet V, Fernandez X (2010) Sulfur-containing volatile compounds in seafood: occurrence, odorant properties and mechanisms of formation. Food Science and Technology International 16(6):463–503

  • Vasquez Y, Escobar MC, Saenz JS, Quiceno-Vallejo MF, Neculita CM, Arbeli Z, Roldan F (2018) Effect of hydraulic retention time on microbial community in biochemical passive reactors during treatment of acid mine drainage. Bioresour Technol 247:624–632

    CAS  Google Scholar 

  • Wan S, Li G, An T, Guo B, Sun L, Zu L, Ren A (2010) Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation 21(6):1057–1066

    CAS  Google Scholar 

  • Wang K, Sheng Y, Cao H, Yan K, Zhang Y (2017a) Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor. Chem Eng J 307:150–158

    CAS  Google Scholar 

  • Wang K, Sheng Y, Cao H, Yan K, Zhang Y (2017b) A novel microbial electrolysis cell (MEC) reactor for biological sulfate-rich wastewater treatment using intermittent supply of electric field. Biochem Eng J 125:10–17

    CAS  Google Scholar 

  • Wang Y, Lin H, Hu B (2019) Electrochemical removal of hydrogen sulfide from swine manure. Chem Eng J 356:210–218

    CAS  Google Scholar 

  • Weijma J, Gubbels F, Hulshoff Pol LW, Stams AJM, Lens PNL, Lettinga G (2002) Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Sci Technol 45(10):75–80

    CAS  Google Scholar 

  • Wenjing L, Zhenhan D, Dong L, Jimenez LMC, Yanjun L, Hanwen G, Hongtao W (2015) Characterization of odor emission on the working face of landfill and establishing of odorous compounds index. Waste Manag 42:74–81

  • Wells T, Melchers RE (2015) Modelling concrete deterioration in sewers using theory and field observations. Cem Concr Res 77:82–96

    CAS  Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulphate and sulphur reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley & Sons, New York, pp 469–585

    Google Scholar 

  • Wright KE, Williamson C, Grasby SE, Spear JR., Templeton AS (2013) Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass. Front Microbiol 4

  • Xu XJ, Chen C, Lee DJ, Wang AJ, Guo WQ, Zhou X, Guo HL, Yuanm Y, Ren NQ, Chang JS (2013) Sulfate-reduction, sulfide-oxidation and elementary sulfur bioremediation process modeling and experimental validation. Bioresour Technol 147:202–211

    CAS  Google Scholar 

  • Xu X, Chen C, Wang A, Guo W, Zhou X, Lee D, Ren N, Chang J (2014) Simultaneous removal of sulfide, nitrate and acetate under denitrifying sulfide removal condition: modeling and experimental validation. J Hazard Mater 264:16–24

    CAS  Google Scholar 

  • Xu L, Yu X, Liu L, Zhang R (2016) A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chem S2122215549

  • Yoon JH, Kang SJ, Ryu SH, Jeon CO, Oh TK (2008) Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 58(2):393–397

    CAS  Google Scholar 

  • Yoshio Y, Nagata E. (2003) Measurement of odor threshold by triangle odor bag method. Japan Ministry of the Environment

  • Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42(1):1–12

    CAS  Google Scholar 

  • Zhang B, Zhao H, Shi C, Zhou S, Ni J (2009) Simultaneous removal of sulfide and organics with vanadium(V) reduction in microbial fuel cells. J Chem Technol Biotechnol 84(12):1780–1786

    CAS  Google Scholar 

  • Zhang W, Sileika T, Packman AI (2013a) Effects of fluid flow conditions on interactions between species in biofilms. FEMS Microbiol Ecol 84(2):344–354

    CAS  Google Scholar 

  • Zhang J, Zhang B, Tian C, Ye Z, Liu Y, Lei Z, Feng C (2013b) Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells. Bioresour Technol 138:198–203

    CAS  Google Scholar 

  • Zhang H, Li G, Gu J, Wang G, Li Y, Zhang D (2016) Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste. Waste Manag 58:369–375

    CAS  Google Scholar 

  • Zhang Z, Han Y, Xu C, Han H, Zhong D, Zheng M, Ma W (2019) Effect of low-intensity direct current electric field on microbial nitrate removal in coal pyrolysis wastewater with low COD to nitrogen ratio. Bioresour Technol 287:121465

    CAS  Google Scholar 

  • Zuo Z, Chang J, Lu Z, Wang M, Lin Y, Zheng M, Zhu DZ, Yu T, Huang X, Liu Y (2019) Hydrogen sulfide generation and emission in urban sanitary sewer in China: what factor plays the critical role. Environ Sci Water Res Technol 175:1–28

    Google Scholar 

Download references

Funding

The writers gratefully acknowledge the financial support from the China Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07206-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchao Zhou.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Gu, T., Zhang, G. et al. Experimental study on volatile sulfur compound inhibition using a single-chamber membrane-free microbial electrolysis cell. Environ Sci Pollut Res 27, 30571–30582 (2020). https://doi.org/10.1007/s11356-020-09325-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09325-8

Keywords

Navigation