Skip to main content
Log in

Effect of salinity on zinc toxicity (ZnCl2 and ZnO nanomaterials) in the mosquitofish (Gambusia sexradiata)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zn is an essential trace metal in living beings. However, excessive concentrations can cause toxic effects even in the aquatic biota. Zn is widely used in different industrial sectors, which has increased its presence in aquatic environments. To assess the acute toxicity of Zn, bioassays were performed with the fish Gambusia sexradiata for a 96-h exposure using ZnCl2 (0 and 15 salinity) and ZnO nanomaterials (0 salinity). The mean lethal concentrations (LC50–96 h) for ZnCl2 were 25.36 (19.64–32.76) and 177.91 (129.39–244.63) mg Zn L−1 to 0 and 15 salinity, respectively. The increased concentration of ZnCl2 showed a dose-response relationship; similarly, the increase in salinity significantly reduces the toxicity of Zn. Characterisation of ZnO nanomaterials was carried out by FTIR, DRX, SEM, DLS and zeta potential. The FTIR spectra showed the characteristic band of Zn-O vibration at 364 cm−1, while DRX presents the hexagonal wurtzite structure with an average crystallite size of 40 nm. SEM micrographs reveal rod-like shapes with lengths and diameters of 40–350 nm and 90 nm, respectively. Agglomerates of 423 nm in water suspension were obtained by DLS and zeta potential of + 14.4 mV. Under these conditions, no mortality was observed due to the rapid flocculation/precipitation of ZnO nanomaterials, which involved brief interaction periods of Zn in the water column with the fish. Gambusia sexradiata is affected by increased Zn concentrations in hard water conditions, and salinity changes modified Zn toxicity, placing it as a suitable model for toxicity tests for this type of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Warith AA, Younis EM, Al-Asgah NA, Wahbi OM (2011) Effect of zinc toxicity on liver histology of Nile tilapia, Oreochromis niloticus. Sci Res Essays 6:3760–3769. https://doi.org/10.5897/sre11.883

    Article  CAS  Google Scholar 

  • Abney MA, Rakocinski CF (2004) Life-history variation in Caribbean gambusia, Gambusia puncticulata puncticulata (Poeciliidae) from the Cayman Islands, BritishWest Indies. Environ Biol Fish 70:67–79

    Article  Google Scholar 

  • AILAD (2010) Manual para el manejo de animales con fines de experimentación y de enseñanza. Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco

  • Alkaladi A, Afifi M, Youssef-Mosleh Y, Abu-Zinada O (2014) Ultrastructure alteration of sublethal concentrations of zinc oxide nanoparticles on Nile Tilapia (Oreochromis niloticus) and the protective effects of vitamins C and E. Life Sci J 11:257–262

    Google Scholar 

  • Andreu V, Gimeno-García E, Pascual JA, Vazquez-Roig P, Picó Y (2016) Presence of pharmaceuticals and heavy metals in the waters of a Mediterranean coastal wetland: potential interactions and the influence of the environment. Sci Total Environ 540:278–286. https://doi.org/10.1016/j.scitotenv.2015.08.007

    Article  CAS  Google Scholar 

  • ANSES (2014) Assessment of the risks associated with nanomaterials, issues and update of current knowledge. Maisons-Alfor, France

  • Argota-Pérez G, González-Pérez Y (2013) Determinación enzimática y metales pesados en cerebro e hígado del modelo ecotoxicológico Gambusia punctata (Poeciliidae). MEDISAN 17:221–229

    Google Scholar 

  • ATSDR (2005) Toxicological profile for zinc. Agency for Toxic Substances and Disease Registry, Atlanta

    Google Scholar 

  • Authman MMN, Zaki MS, Khallaf EA, Abbas HH (2015) Use of fish as bio-indicator of the effects of heavy metals pollution. J Aquac Res Dev 6:4. https://doi.org/10.4172/2155-9546.1000328

    Article  CAS  Google Scholar 

  • Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, Chai Z (2010) Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. J Nanopart Res 12:1645–1654. https://doi.org/10.1007/s11051-009-9740-9

    Article  CAS  Google Scholar 

  • Barreto-Solano GJ, Peralta-Perez AG (2009) Determinación de la concentración letal media (CL50–96) de cobre (Cu) y cinc (Zn) mediante pruebas toxicológicas (bioensayos), utilizando alevinos de Oncorhynchus mykiss (trucha arco iris). Universidad de la Salle

  • Bielmyer GK, Bullington JB, Decarlo CA et al (2012) The effects of salinity on acute toxicity of zinc to two euryhaline species of fish, Fundulus heteroclitus and Kryptolebias marmoratus. Integr Comp Biol 52:753–760. https://doi.org/10.1093/icb/ics045

    Article  CAS  Google Scholar 

  • Boran H, Ulutas G (2016) Genotoxic effects and gene expression changes in larval zebrafish after exposure to ZnCl2 and ZnO nanoparticles. Dis Aquat Org 117:205–214. https://doi.org/10.3354/dao02943

    Article  CAS  Google Scholar 

  • Bueno J, Álvarez F, Santiago S (2005) Biodiversidad del Estado de Tabasco. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Universidad Nacional Autónoma de México: Instituto de Biología, México

  • Casal CM, Reyes R (2019) Fishbase. https://www.fishbase.se/summary/Gambusia-sexradiata.html. Accessed 21 November 2019

  • Davis SK, Echelle AA, Van Den Bussche RA (2006) Lack of cytonuclear genetic introgression despite long-term hybridization and backcrossing between two poeciliid fishes (Gambusia heterochir and G. affinis). Copeia 3:351–359

    Article  Google Scholar 

  • Delmond KA, Vicari T, Guiloski IC, Dagostim AC, Voigt CL, Silva de Assis HC, Ramsdorf WA, Cestari MM (2019) Antioxidant imbalance and genotoxicity detected in fish induced by titanium dioxide nanoparticles (NpTiO2) and inorganic lead (PbII). Environ Toxicol Pharmacol 67:42–52. https://doi.org/10.1016/j.etap.2019.01.009

    Article  CAS  Google Scholar 

  • Dzul-Caamal R, Lara-Flores M, Rendón Von Osten J (2018) Gambusia yucatana como modelo para estudios ecotoxicológicos en ecosistemas acuáticos de la Península de Yucatán: Situación actual y perspectivas. In: Galar-Martínez M, Ramírez-Romero P, Gasca-Pérez E, Gómez-Oliván LM, Zavala-Aguirre JL, Arzate-Cárdenas MA, Rico-Martínez R (eds) Contribuciones al conocimiento de la ecotoxicología y química ambiental en México, vol 2. Instituto Politécnico Nacional, México City, pp 23–42

    Google Scholar 

  • EPA (1979) Water-related environmental fate of 129 priority pollutants. Environmental Protection Agency, Washington, D.C.

    Google Scholar 

  • EPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, Fifth edn. EPA, Washington D.C.

    Google Scholar 

  • EPA (2005) Toxicological review of zinc and compounds EPA/635/R-05/002, EPA/635/R. EPA, Washington, D.C.

    Google Scholar 

  • EPA (2019) National recommended water quality criteria. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table. Accessed 30 Mar 2019

  • Erguden SA (2013) Age, growth, sex ratio and diet of eastern mosquitofish Gambusia holbrooki Girard, 1859 in Seyhan Dam Lake (Adana/Turkey). Iran J Fish Sci 12:204–218

    Google Scholar 

  • Evans LJ (2000) Fractionation and aqueous speciation of zinc in a lake polluted by mining activities, Flin Flong, Canada. Water Air Soil Pollut 122:299–316. https://doi.org/10.1023/A:1005234831526

    Article  CAS  Google Scholar 

  • FAO (1998) Quality of analytical procedures. http://www.fao.org/3/w7295e/w7295e09.htm#7.5. Accessed 10 Nov 2019

  • FAO (2011) Manual básico de sanidad piscicola. FAO, Ministerio de agricultura y ganaderia-Viceministerio de ganadería

  • Finney DJ (1952) Probit analysis (2nd Ed). J Inst Actuar 78:388–390

  • Fowler J, Cohen L, Jarvis P (1998) Practical statistics for field biology. John Wiley & Sons, West-Sussex

  • Gómez S, Villar C, Bonetto C (1998) Zinc toxicity in the fish Cnesterodon decemmaculatus in the Parana River and Rio de la Plata estuary. Environ Pollut 99:159–165. https://doi.org/10.1016/S0269-7491(97)00194-2

    Article  Google Scholar 

  • Gómez-Ortíz N, De la Rosa-García S, González-Gómez W et al (2013) Antifungal coatings based on Ca (OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments. Appl Mater Interfaces 5:1556–1565. https://doi.org/10.1021/am302783h

    Article  CAS  Google Scholar 

  • Hao L, Chen L (2012) Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicol Environ Saf 80:103–110. https://doi.org/10.1016/j.ecoenv.2012.02.017

    Article  CAS  Google Scholar 

  • ISO (2015) ISO/TS 80004–1:2015(en), Nanotechnologies — Vocabulary — Part 1: Core terms. https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en. Accessed 28 Mar 2019

  • Maćkiewicz E, Pawlaczyk A, Szynkowska MI (2018) Trace elements in the environment – law, regulations, monitoring and biomonitoring methods. In: Chojnacka K, Saeid A (eds) Recent advances in trace elements. John Wiley & Sons Ltd., Poland, pp 61–103

    Chapter  Google Scholar 

  • Martínez-Jerónimo FF, Espinoza-Chavez F (2008) Ensayo de toxicidad aguda con larvas y juveniles de los peces Brachydanio rerio y Poecilia reticulata. In: Ramírez-Romero P, Mendoza-Cantú A (Comp.) Ensayos toxicológicos para la evaluación de sustancias químicas en agua y suelo: la experiencia en México. Instituto Nacional de Ecología-Secretaría de Medio Ambiente y Recursos Naturales, México, pp 115-126

  • Melegari SP, Fuzinatto CF, Gonçalves RA, Oscar BV, Vicentini DS, Matias WG (2019) Can the surface modification and/or morphology affect the ecotoxicity of zinc oxide nanomaterials? Chemosphere 224:237–246. https://doi.org/10.1016/j.chemosphere.2019.02.093

    Article  CAS  Google Scholar 

  • Miller RR, Minckley WL, Norris SM (2005) Freshwater fishes of México. University of Chicago Press, Chicago, p 490

    Google Scholar 

  • Mouneyrac C, Syberg K, Selck H (2015) Ecotoxicological risk of nanomaterials. In: Amiard-Triquet C, Amiard J-C, Mouneyrac C (eds) Aquatic ecotoxicology: advancing tools for dealing with emerging risks. Elsevier Inc., pp 441–462

  • Musálem-Castillejos K, Laino-Guanes R, Bello-Mendoza R, González-Espinosa M, Ramírez-Marcial N (2018) Water quality of the Grijalva river on the Chiapas - Tabasco border. Ecosist Recur Agropec 5:55–64. https://doi.org/10.19136/era.a5n13.1334

    Article  Google Scholar 

  • OECD (2018) Draft guidance document on aquatic and sediment toxicological testing of nanomaterials. 2nd WNT commenting round. United States of America

  • OECD (2019) Test guideline 203. Fish, acute toxicity test. OECD, Paris

    Book  Google Scholar 

  • Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531. https://doi.org/10.1016/j.marpolbul.2014.04.038

    Article  CAS  Google Scholar 

  • Raja PMV, Khabashesku VN, Hughes B (2015) Environmental consequences of engineered nanomaterials: an awareness campaign to promote safe nanotechnology and dispel related misconceptions. https://doi.org/10.4043/26039-ms

  • Ramos-Herrera S, Broca-Martínez LF, Laines-Canepa JR, Carrera-Velueta JM (2012) Tendencia de la calidad del agua en ríos de Tabasco, México. Ingeniería 16:207–217

    Google Scholar 

  • Rietch R, Tobler M, Lerp H, Jourdan J, Doumas T, Nosil P, Langerhans RB, Plath M (2016) Extremophile Poeceiliidae: multivariate insights into the complexity of speciation along replicated ecological gradients. BMC Evol Biol 16:136. https://doi.org/10.1186/s12862-016-0705-1

    Article  CAS  Google Scholar 

  • Salvaggio A, Marino F, Albano M, Pecoraro R, Camiolo G, Tibullo D, Bramanti V, Lombardo BM, Saccone S, Mazzei V, Brundo MV (2016) Toxic effects of zinc chloride on the bone development in Danio rerio (Hamilton, 1822). Front Physiol 7:1–6. https://doi.org/10.3389/fphys.2016.00153

    Article  Google Scholar 

  • Sarasamma S, Audira G, Juniardi S, Sampurna B, Liang ST, Hao E, Lai YH, Hsiao CD (2018) Zinc chloride exposure inhibits brain acetylcholine levels, produces neurotoxic signatures, and diminishes memory and motor activities in adult zebrafish. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103195

  • Sassi A, Annabi A, Kessabi K, Kerkeni A, Saïd K, Messaoudi I (2010) Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiol Biochem 36:403–409. https://doi.org/10.1007/s10695-009-9307-9

    Article  CAS  Google Scholar 

  • Scribner KT (1993) Hybrid zone dynamics are influenced by genotype-specific variation in life-history traits: experimental evidence from hybridizing Gambusia species. Evolution 47:632–646

    Article  Google Scholar 

  • Scribner KT, Avise JC (1994) Population cage experiments with a vertebrate: the temporal demography and cytonuclear genetics of hybridization in Gambusia fishes. Evolution 48:155–171

    Article  Google Scholar 

  • Singh AK (2016) Engineered nanoparticles: structure, properties and mechanisms of toxicity. Academic Press, London

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  • Subashkumar S, Selvanayagam M (2014) First report on : acute toxicity and gill histopathology of freshwater fish Cyprinus carpio exposed to zinc oxide (ZnO) nanoparticles. Int J Sci Res Publ 4:1–4

    Google Scholar 

  • Swenton DM (2010) Sex difference in mate preference between two hybridizing species of poeciliid fish. Ethology 117:208–216. https://doi.org/10.1111/j.1439-0310.2010.01861.x

    Article  Google Scholar 

  • Torres-Mejía RF (2011) Ecomorphology of body shape and life history in females of the genus Gambusia (Poeciliidae) and in guppies (Poecilia reticulata, Poeciliidae). PhD. Thesis. University of California, Riverside. https://escholarship.org/uc/item/8fh4710b

  • Touaylia S, Labiadh H (2018) Effect of the exposure to Mn-doped ZnS nanoparticles on biomarkers in the freshwater western mosquitofish Gambusia affinis. Int J Environ Health Res:1–12. https://doi.org/10.1080/09603123.2018.1508648

  • Toumi H, Bejaoui M, Touaylia S, Burga-Perez KF, Ferard JF (2016) Effect of carbaryl (carbamate insecticide) on acetylcholinesterase activity of two strains of Daphnia magna (Crustacea, Cladocerea). J Environ Sci Health B 51:1–4. https://doi.org/10.1080/03601234.2016.1198645

    Article  CAS  Google Scholar 

  • Uribe-López MC, Alvarez-Lemus MA, Hidalgo MC et al (2019) Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J Nanomater 2019:1–12. https://doi.org/10.1155/2019/1015876

    Article  CAS  Google Scholar 

  • Valentino-Álvarez JA, Núñez-Nogueira G, Fernández-Bringas L (2013) Acute toxicity of arsenic under different temperatures and salinity conditions on the white shrimp Litopenaeus vannamei. Biol Trace Elem Res 152:350–357. https://doi.org/10.1007/s12011-013-9635-6

    Article  CAS  Google Scholar 

  • Vaseem M, Umar A, Hahn Y (2010) ZnO nanoparticles : growth, properties, and applications. In: Umar A, Hahn Y-B (eds) Metal oxide nanostructures and their applications. American Scientific Publishers, pp 1–36

  • Weldele ML, Zúñiga-Vega J, Johnson JB (2014) Life history of Gambusia vittata (Pisces: Poeciliidae). Southwest Nat 59:449–460. https://doi.org/10.1894/MP-08.1

    Article  Google Scholar 

  • Wheeler MW, Park RM, Bailer AJ (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem 25:1441–1444

    Article  CAS  Google Scholar 

  • Wood CM, Farrel AP, Brauner CJ (2012) Homeostasis and toxicology of essential metals. Academic Press,London

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452. https://doi.org/10.1016/j.scitotenv.2011.01.015

    Article  CAS  Google Scholar 

  • Xu Y, Wang C, Hou J, Dai S, Wang P, Miao L, Lv B, Yang Y, You G (2016) Effects of ZnO nanoparticles and Zn2+ on fluvial biofilms and the related toxicity mechanisms. Sci Total Environ 544:230–237. https://doi.org/10.1016/j.scitotenv.2015.11.130

    Article  CAS  Google Scholar 

  • Yu L, Fang T, Xiong D, Zhu WT, Sima XF (2011) Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water. J Environ Monit 13:1975–1982. https://doi.org/10.1039/c1em10197h

    Article  CAS  Google Scholar 

  • Yung MMN, Kwok KWH, Djurišić AB, Giesy JP, Leung KMY (2017) Influences of temperature and salinity on physicochemical properties and toxicity of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Nature 7:1–9. https://doi.org/10.1038/s41598-017-03889-1

    Article  CAS  Google Scholar 

  • Zak AK, Abrishami ME, Majid WHA, Yousefi R, Hosseini SM (2011) Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method. Ceram Int 37:393–398. https://doi.org/10.1016/j.ceramint.2010.08.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the Tabasco Research Center for Applied Science and Technology Laboratory (CICTAT) of the DAIA-UJAT; Cunduacán-Tabasco for analytical support; Dr. Lenin Arias-Rodríguez and Mr. Román and his sons for their assistance in the capture of organisms; and Biol. Juanita M. Santos-Córdova, Brenda Marín-Olan, Aurora Torres-Hernández, José Fernando Hidalgo de la O, Alondra Galicia-Alfaro and Lizzcie Yazmin Garmon-Hernández for their assistance during the laboratory work. Thanks to E. Núñez-Jìménez for English improvement of this msm. We thank the reviewers for their valuable comments and suggestions to improve this manuscript.

Funding

The authors received funding provided by the Programa para el Desarrollo del Profesional Docente-Secretaría de Educación Pública (PRODEP-SEP) through the UJAT-PTC-283 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Núñez-Nogueira.

Additional information

Responsible Editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-López, A., Núñez-Nogueira, G., Álvarez-González, C.A. et al. Effect of salinity on zinc toxicity (ZnCl2 and ZnO nanomaterials) in the mosquitofish (Gambusia sexradiata). Environ Sci Pollut Res 27, 22441–22450 (2020). https://doi.org/10.1007/s11356-020-08851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-08851-9

Keywords

Navigation