Skip to main content
Log in

Could phthalates exposure contribute to the development of metabolic syndrome and liver disease in humans?

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the study, 305 patients of both genders were enrolled and divided into three groups: obese (BMI > 30 kg/m2), patients who were diagnosed type 2 diabetes mellitus (T2DM), and control, normal weight healthy volunteers. At least one of ten different phthalate metabolites was determined in the urine samples of 49.84% all enrolled participants. In the obese subgroup, the sum of all urinary phthalate metabolites was positively associated with TG levels (p = 0.031) together with derived TC/HDL and TG/HDL ratios (p = 0.023 and 0.015), respectively. Urinary MEP concentration was positively correlated with the HOMA-IR in T2DM subgroup (p = 0.016) while in the control subgroup, log10MEP levels were negatively correlated with total cholesterol (p = 0.0051), and LDL serum levels (p = 0.0015), respectively. Also, in the control subgroup, positive linear correlations between urinary log10MEP levels and TyG and TYG-BMI values (p = 0.028 and p = 0.027), respectively, were determined. Urinary MEHP levels were associated with glucose serum levels (p = 0.02) in T2DM subgroup, while in the control HDL values were negatively associated with log10MEHP (p = 0.0035). Healthy volunteers exposed to phthalates had elevated AST levels in comparison to non-exposed ones (p = 0.023). In control subgroup, ALT and AST values were increased (p = 0.02 and p = 0.01, respectively) in MEP exposed while GGT levels were enhanced (p = 0.017) in MEHP exposed in comparison with non-exposed. Combined phthalates influence on glucose and lipid metabolism may increase the possibility for NAFLD and insulin resistance development among exposed individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abenavoli L, Milic N, Di Renzo L, Preveden T, Medić-Stojanoska M, De Lorenzo A (2016) Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J Gastroenterol 22(31):7006–7016

    CAS  Google Scholar 

  • Aguilar-Morales I, Colin-Ramirez E, Rivera-Mancía S, Vallejo M, Vázquez-Antona C (2018) Performance of waist-to-height ratio, waist circumference, and body mass index in discriminating cardio-metabolic risk factors in a sample of school-aged Mexican Children. Nutrients 10(12):1850

    Google Scholar 

  • Ahmad S, Khan MF, Parvez S, Akhtar M, Raisuddin S (2017) Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway. J Appl Toxicol 37(3):265–277

    CAS  Google Scholar 

  • Al-Goblan AS, Al-Alfi MA, Khan MZ (2014) Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 7:587–591

    Google Scholar 

  • Al-Saleh I, Shinwari N, Alsabbaheen A (2011) Phthalates residues in plastic bottled waters. J Toxicol Sci 36(4):469–478

    CAS  Google Scholar 

  • Amato MC, Giordano C (2014) Visceral adiposity index: an indicator of adipose tissue dysfunction. Int J Endocrinol 2014:730827

    Google Scholar 

  • Amin MM, Ebrahimpour K, Parastar S, Shoshtari-Yeganeh B, Hashemi M, Mansourian M, Poursafa P, Fallah Z, Rafiei N, Kelishadi R (2018) Association of urinary concentrations of phthalate metabolites with cardiometabolic risk factors and obesity in children and adolescents. Chemosphere 211:547–556

    CAS  Google Scholar 

  • Attina TM, Trasande L (2015) Association of exposure to Di-2-Ethylhexylphthalate replacements with increased insulin resistance in adolescents from NHANES 2009-2012. J Clin Endocrinol Metab 100(7):2640–2650

    CAS  Google Scholar 

  • Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL (2005) Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 113(2):192–200

    CAS  Google Scholar 

  • Campins Falcó P, Tortajada Genaro LA, Meseger Lloret S, Blasco Gomez F, Sevillano Cabeza A, Molins Legua C (2001) Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffé reaction: chemometric study. Talanta 55(6):1079–1089

    Google Scholar 

  • Cavaliere B, Macchione B, Sindona G, Tagarelli A (2008) Tandem mass spectrometry in food safety assessment: the determination of phthalates in olive oil. J Chromatogr A 1205:137–143

    CAS  Google Scholar 

  • Chatrath H, Vuppalanchi R, Chalasani N (2012) Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin Liver Dis 32(1):22–29

    CAS  Google Scholar 

  • Chen H, Zhang W, Rui BB, Yang SM, Xu WP, Wei W (2016) Di(2-ethylhexyl) phthalate exacerbates non-alcoholic fatty liver in rats and its potential mechanisms. Environ Toxicol Pharmacol 42:38–44

    CAS  Google Scholar 

  • Cohen DE, Fisher EA (2013) Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin Liver Dis 33(4):380–388

    CAS  Google Scholar 

  • Correia-Sá L, Kasper-Sonnenberg M, Pälmke C, Schütze A, Norberto S, Calhau C, Domingues VF, Koch HM (2018) Obesity or diet? Levels and determinants of phthalate body burden - a case study on Portuguese children. Int J Hyg Environ Health 221(3):519–530

    Google Scholar 

  • Dallio M, Masarone M, Errico S, Gravina AG, Nicolucci C, Di Sarno R, Gionti L, Tuccillo C, Persico M, Stiuso P, Diano N, Loguercio C, Federico A (2018) Role of bisphenol A as environmental factor in the promotion of non-alcoholic fatty liver disease: in vitro and clinical study. Aliment Pharmacol Ther 47(6):826–837

    CAS  Google Scholar 

  • Dales RE, Kauri LM, Cakmak S (2018) The associations between phthalate exposure and insulin resistance, β-cell function and blood glucose control in a population-based sample. Sci Total Environ 612:1287–1292

    CAS  Google Scholar 

  • Desvergne B, Feige JN, Casals-Casas C (2009) PPAR-mediated activity of phthalates: a link to the obesity epidemic? Mol Cell Endocrinol 304(1-2):43–48

    CAS  Google Scholar 

  • De Toni L, Tisato F, Seraglia R, Roverso M, Gandin V, Marzano C, Padrini R, Foresta C (2017) Phthalates and heavy metals as endocrine disruptors in food: A study on pre-packed coffee products. Toxicol Rep 4:234–239

    Google Scholar 

  • Del Carlo M, Pepe A, Sacchetti G, Compagnone D, Mastrocola D, Cichelli A (2008) Determination of phthalate esters in wine using solid-phase extraction and gas chromatography-mass spectrometry. Food Chem 111:771–777

    Google Scholar 

  • Dong R, Chen J, Zheng J, Zhang M, Zhang H, Wu M, Li S, Chen B (2018) The role of oxidative stress in cardiometabolic risk related to phthalate exposure in elderly diabetic patients from Shanghai. Environ Int 121(Pt 1):340–348

    CAS  Google Scholar 

  • Du T, Yuan G, Zhang M, Zhou X, Sun X, Yun X (2014) Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol 13(1):146

    Google Scholar 

  • Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, Ko YL (2016) Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS One 11(3):e0149731

    Google Scholar 

  • Fontenele EG, Martins MR, Quidute AR, Montenegro RM (2010) Environmental contaminants and endocrine disruptors. Arq Bras Endocrinol Metabol 54(1):6–16

    Google Scholar 

  • Foulds CE, Treviño LS, York B, Walker CL (2017) Endocrine-disrupting chemicals and fatty liver disease. Nat Rev Endocrinol 13(8):445–457

    CAS  Google Scholar 

  • Gaston SA, Tulve NS (2019) Urinary phthalate metabolites and metabolic syndrome in U.S. adolescents: cross-sectional results from the National Health and Nutrition Examination Survey (2003-2014) data. Int J Hyg Environ Health 222(2):195–204

    CAS  Google Scholar 

  • Harada S, Miyagi K, Obata T, Morimoto Y, Nakamoto K, Kim KI, Kim SK, Kim SR, Tokuyama S (2017) Influence of hyperglycemia on liver inflammatory conditions in the early phase of non-alcoholic fatty liver disease in mice. J Pharm Pharmacol 69(6):698–705

    CAS  Google Scholar 

  • Hart R, Doherty DA, Frederiksen H, Keelan JA, Hickey M, Sloboda D, Pennell CE, Newnham JP, Skakkebaek NE, Main KM (2014) The influence of antenatal exposure to phthalates on subsequent female reproductive development in adolescence: a pilot study. Reproduction 147(4):379–390

    CAS  Google Scholar 

  • Hart RJ, Frederiksen H, Doherty DA, Keelan JA, Skakkebaek NE, Minaee NS, McLachlan R, Newnham JP, Dickinson JE, Pennell CE, Norman RJ, Main KM (2018) The possible impact of antenatal exposure to ubiquitous phthalates upon male reproductive function at 20 years of age. Front Endocrinol (Lausanne) 9:288

    Google Scholar 

  • Hatch EE, Nelson JW, Qureshi MM, Weinberg J, Moore LL, Singer M, Webster TF (2008) Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999-2002. Environ Health 7:27

    Google Scholar 

  • Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM (2004) Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect 112(17):1734–1740

    CAS  Google Scholar 

  • Hazlehurst JM, Woods C, Marjot T, Cobbold JF, Tomlinson JW (2016) Non-alcoholic fatty liver disease and diabetes. Metabolism 65(8):1096–1108

    CAS  Google Scholar 

  • Hernández-Díaz S, Mitchell AA, Kelley KE, Calafat AM, Hauser R (2009) Medications as a potential source of exposure to phthalates in the U.S. population. Environ Health Perspect 117(2):185–189

    Google Scholar 

  • Hoppin JA, Brock JW, Davis BJ, Baird DD (2002) Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect 110(5):515–518

    CAS  Google Scholar 

  • Huff M, da Silveira WA, Carnevali O, Renaud L, Hardiman G (2018) Systems analysis of the liver transcriptome in adult male zebrafish exposed to the plasticizer (2-Ethylhexyl) phthalate (DEHP). Sci Rep 8(1):2118

    Google Scholar 

  • James-Todd T, Stahlhut R, Meeker JD, Powell SG, Hauser R, Huang T, Rich-Edwards J (2012) Urinary phthalate metabolite concentrations and diabetes among women in the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Environ Health Perspect 120(9):1307–1313

    Google Scholar 

  • James-Todd TM, Huang T, Seely EW, Saxena AR (2016a) The association between phthalates and metabolic syndrome: the National Health and Nutrition Examination Survey 2001-2010. Environ Health 15:52

    Google Scholar 

  • James-Todd TM, Meeker JD, Huang T, Hauser R, Ferguson KK, Rich-Edwards JW, McElrath TF, Seely EW (2016b) Pregnancy urinary phthalate metabolite concentrations and gestational diabetes risk factors. Environ Int 96:118–126

    CAS  Google Scholar 

  • Jia X, Zhai T (2019) Integrated analysis of multiple microarray studies to identify novel gene signatures in non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 10:599

    Google Scholar 

  • Jia Y, Liu T, Zhou L, Zhu J, Wu J, Sun D, Xu J, Wang Q, Chen H, Xu F, Zhang Y, Zhang T, Liu H, Ye L (2016) Effects of di-(2-ethylhexyl) phthalate on lipid metabolism by the JAK/STAT pathway in rats. Int J Environ Res Public Health 13(11)

    Google Scholar 

  • Kahn HS (2005) The lipid accumulation product performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord 5:26

    Google Scholar 

  • Katsiki N, Mikhailidis DP, Mantzoros CS (2016) Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism 65(8):1109–1123

    CAS  Google Scholar 

  • Kay VR, Chambers C, Foster WG (2013) Reproductive and developmental effects of phthalate diesters in females. Crit Rev Toxicol 43(3):200–219

    CAS  Google Scholar 

  • Kessler W, Numtip W, Völkel W, Seckin E, Csanády GA, Pütz C, Klein D, Fromme H, Filser JG (2012) Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-deuterated DEHP. Toxicol Appl Pharmacol 264(2):284–291

    CAS  Google Scholar 

  • Kim JH, Park HY, Bae S, Lim YH, Hong YC (2013) Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: a panel study. PLoS One 8(8):e71392

    Google Scholar 

  • Kim S, Park J (2014) Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab 19(2):69–75

    Google Scholar 

  • Kwack SJ, Han EY, Park JS, Bae JY, Ahn IY, Lim SK, Kim DH, Jang DE, Choi L, Lim HJ, Kim TH, Patra N, Park KL, Kim HS, Lee BM (2010) Comparison of the short term toxicity of phthalate diesters and monoesters in sprague-dawley male rats. Toxicol Res 26(1):75–82

    CAS  Google Scholar 

  • Lambrinoudaki I, Kazani MV, Armeni E, Georgiopoulos G, Tampakis K, Rizos D, Augoulea A, Kaparos G, Alexandrou A, Stamatelopoulos K (2018) The TyG index as a marker of subclinical atherosclerosis and arterial stiffness in lean and overweight postmenopausal women. Heart Lung Circ 27(6):716–724

    Google Scholar 

  • Lind PM, Lind L (2011) Circulating levels of bisphenol A and phthalates are related to carotid atherosclerosis in the elderly. Atherosclerosis 218(1):207–213

    CAS  Google Scholar 

  • Milošević N, Milić N, Živanović Bosić D, Bajkin I, Perčić I, Abenavoli L, Medić Stojanoska M (2017) Potential influence of the phthalates on normal liver function and cardiometabolic risk in males. Environ Monit Assess 190(1):17

    Google Scholar 

  • Medic Stojanoska M, Milankov A, Vukovic B, Vukcevic D, Sudji J, Bajkin I, Curic N, Icin T, Kovacev Zavisic B, Milic N (2015) Do diethyl phthalate (DEP) and di-2-ethylhexyl phthalate (DEHP) influence the metabolic syndrome parameters? Pilot study. Environ Monit Assess 187(8):526

    Google Scholar 

  • Medic Stojanoska M, Milosevic N, Milic N, Abenavoli L (2017) The influence of phthalates and bisphenol A on the obesity development and glucose metabolism disorders. Endocrine 55(3):666–681

    Google Scholar 

  • Milić N, Četojević-Simin D, Milanović M, Sudji J, Milošević N, Ćurić N, Abenavoli L, Medić-Stojanoska M (2015) Estimation of in vivo and in vitro exposure to bisphenol A as food contaminant. Food Chem Toxicol 83:268–274

    Google Scholar 

  • Moreira MA, André LC, Cardea ZL (2014) Analysis of phthalate migration to food simulants in plastic containers during microwave operations. Int J Environ Res Public Health 11(1):507–526

    Google Scholar 

  • Navarro-González D, Sánchez-Íñigo L, Pastrana-Delgado J, Fernández-Montero A, Martinez JA (2016) Triglyceride-glucose index (TyG index) in comparison with fasting plasma glucose improved diabetes prediction in patients with normal fasting glucose: The Vascular-Metabolic CUN cohort. Prev Med 86:99–105

    Google Scholar 

  • Olsén L, Lind L, Lind PM (2012) Associations between circulating levels of bisphenol A and phthalate metabolites and coronary risk in the elderly. Ecotoxicol Environ Saf 80:179–183

    Google Scholar 

  • Perng W, Watkins DJ, Cantoral A, Mercado-García A, Meeker JD, Téllez-Rojo MM, Peterson KE (2017) Exposure to phthalates is associated with lipid profile in peripubertal Mexican youth. Environ Res 154:311–317

    CAS  Google Scholar 

  • Petta S, Muratore C, Craxì A (2009) Non-alcoholic fatty liver disease pathogenesis: the present and the future. Dig Liver Dis 41(9):615–625

    CAS  Google Scholar 

  • Pradhan A, Olsson PE, Jass J (2018) Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans. Chemosphere 190:375–382

    CAS  Google Scholar 

  • Rajesh P, Balasubramanian K (2014) Di(2-ethylhexyl) phthalate exposure impairs insulin receptor and glucose transporter 4 gene expression in L6 myotubes. Hum Exp Toxicol 33(7):685–700

    CAS  Google Scholar 

  • Ravi Kanth VV, Sasikala M, Sharma M, Rao PN, Reddy DN (2016) Genetics of non-alcoholic fatty liver disease: from susceptibility and nutrient interactions to management. World J Hepatol 8(20):827–837

    Google Scholar 

  • Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, Rizzo J, Nudelman JL, Brody JG (2011) Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect 119(7):914–920

    CAS  Google Scholar 

  • Salgado AL, Carvalho L, Oliveira AC, Santos VN, Vieira JG, Parise ER (2010) Insulin resistance index (HOMA-IR) in the differentiation of patients with nonalcoholic fatty liver disease and healthy individuals. Arq Gastroenterol 47(2):165–169

    Google Scholar 

  • Samuel VT, Shulman GI (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J Clin Invest 126(1):12–22

    Google Scholar 

  • Sarwar R, Pierce N, Koppe S (2018) Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes Metab Syndr Obes 11:533–542

    CAS  Google Scholar 

  • Sattar N, Scherbakova O, Ford I, O'Reilly DS, Stanley A, Forrest E, Macfarlane PW, Packard CJ, Cobbe SM, Shepherd J, west of Scotland coronary prevention study (2004) Elevated alanine aminotransferase predicts new-onset type 2 diabetes independently of classical risk factors, metabolic syndrome, and C-reactive protein in the west of Scotland coronary prevention study. Diabetes 53(11):2855–2860

    CAS  Google Scholar 

  • Sheridan DA, Aithal G, Alazawi W, Allison M, Anstee Q, Cobbold J, Khan S, Fowell A, McPherson S, Newsome PN, Oben J, Tomlinson J, Tsochatzis E (2017) Care standards for non-alcoholic fatty liver disease in the United Kingdom 2016: a cross-sectional survey. Frontline Gastroenterol 8(4):252–259

    Google Scholar 

  • Shoshtari-Yeganeh B, Zarean M, Mansourian M, Riahi R, Poursafa P, Teiri H, Rafiei N, Dehdashti B, Kelishadi R (2019) Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ Sci Pollut Res Int 26(10):9435–9442

    CAS  Google Scholar 

  • Singh S, Li SS (2011) Phthalates: toxicogenomics and inferred human diseases. Genomics 97(3):148–157

    CAS  Google Scholar 

  • Song Y, Hauser R, Hu FB, Franke AA, Liu S, Sun Q (2014) Urinary concentrations of bisphenol A and phthalate metabolites and weight change: a prospective investigation in US women. Int J Obes 38(12):1532–1537

    CAS  Google Scholar 

  • Trasande L, Attina TM, Sathyanarayana S, Spanier AJ, Blustein J (2013a) Race/ethnicity-specific associations of urinary phthalates with childhood body mass in a nationally representative sample. Environ Health Perspect 121:501–506

    Google Scholar 

  • Trasande L, Sathyanarayana S, Spanier AJ, Trachtman H, AttinaTM Urbina EM (2013b) Urinary phthalates are associated with higher blood pressure in childhood. J Pediatr 163(3):747–753

    CAS  Google Scholar 

  • Unger G, Benozzi SF, Perruzza F, Pennacchiotti GL (2014) Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinol Nutr 61(10):533–540

    Google Scholar 

  • Verstraete SG, Wojcicki JM, Perito ER, Rosenthal P (2018) Bisphenol a increases risk for presumed non-alcoholic fatty liver disease in Hispanic adolescents in NHANES 2003-2010. Environ Health 17(1):12

    Google Scholar 

  • Vespasiani-Gentilucci U, Gallo P, Dell’Unto C, Volpentesta M, Antonelli-Incalzi R, Picardi A (2018) Promoting genetics in non-alcoholic fatty liver disease: combined risk score through polymorphisms and clinical variables. World J Gastroenterol 24(43):4835–4845

    CAS  Google Scholar 

  • Waissmann W (2002) Health surveillance and endocrine disruptors. Cad Saúde Pública 18(2):511–517

    Google Scholar 

  • Wannamethee SG, Shaper AG, Lennon L, Whincup PH (2005) Hepatic enzymes, the metabolic syndrome, and the risk of type 2 diabetes in older men. Diabetes Care 28(12):2913–2918

    CAS  Google Scholar 

  • Xia B, Zhu Q, Zhao Y, Ge W, Zhao Y, Song Q, Zhou Y, Shi H, Zhang Y (2018) Phthalate exposure and childhood overweight and obesity: urinary metabolomic evidence. Environ Int 121:159–168

    CAS  Google Scholar 

  • Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R (2016) A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. Environ Sci Pollut Res 23:24642–24693

    CAS  Google Scholar 

  • Zhang S, Du T, Li M, Jia J, Lu H, Lin X, Yu X (2017) Triglyceride glucose-body mass index is effective in identifying nonalcoholic fatty liver disease in non-obese subjects. Medicine (Baltimore) 96(22):e7041

    CAS  Google Scholar 

  • Zheng S, Shi S, Ren X, Han T, Li Y, Chen Y, Liu W, Hou PC, Hu Y (2016) Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: cross-sectional and prospective cohort study. J Transl Med 14:260

    Google Scholar 

Download references

Funding

This research has been financially supported by the Provincial Secretariat for Science and Technological Development, AP Vojvodina, Republic of Serbia, Grant No 114-451-2216/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Milanović.

Additional information

Responsible Editor: Philipp Gariguess

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milošević, N., Milanović, M., Sudji, J. et al. Could phthalates exposure contribute to the development of metabolic syndrome and liver disease in humans?. Environ Sci Pollut Res 27, 772–784 (2020). https://doi.org/10.1007/s11356-019-06831-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06831-2

Keywords

Navigation