Skip to main content
Log in

Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fluoxetine (FLX) is one of the main antidepressants used worldwide. After human use, FLX enters the aquatic ecosystems, where it has commonly detected in the high ng/L concentration range. Several investigations have shown that exposure to different concentrations of FLX caused different adverse effects towards a number of aquatic species. However, the information on the onset and the relationship between molecular and behavioral FLX-induced effects remains scant. The aim of this study was to assess the effects induced by two FLX concentrations, namely 50 ng/L and 500 ng/L, on swimming activity of zebrafish (Danio rerio) larvae at 96-h post-fertilization (hpf) and to investigate if such behavioral effects were related to modulation of the expression of oxidative stress-related (sod1, sod2, cat, gpxa, and gst), stress- and anxiety-related (oxtl, prl2, npy, and ucn3l) genes, and genes encoding for the transporters of the main neurotransmitters (slc6a3, slc6a4a, slc6a4b, slc6a11). Fluoxetine exposure altered the swimming behavior of larvae, as shown by the reduction of the distance traveled by treated larvae in response to an external stimulus. Such behavioral change was related, at molecular level, to an enhanced expression of sod1, cat, and gpxa, suggesting an overproduction of pro-oxidant molecules. In addition, FLX modulated the expression of oxtl, slc6a4a, slc6a4b, and slc6a11, suggesting its capability to affect anxiety- and neurotransmitter-related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu MS, Koakoski G, Ferreira D, Oliveira TA, Rosa JGS, Gusso D, Giacomini ACV, Piato AL, Barcellos LJG (2014) Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One 9. https://doi.org/10.1371/journal.pone.0103232

    Google Scholar 

  • Abreu MS, Giacomini ACV, Koakoski G, Oliveira TA, Gusso D, Baldisserotto B, Barcellos LJG (2015) Effects of waterborne fluoxetine on stress response and osmoregulation in zebrafish. Environ Toxicol Pharmacol 40:704–707

    CAS  Google Scholar 

  • Abreu MS, Giacomini ACV, Gusso D, Rosa JGS, Koakoski G, Kalichak F, Idalêncio R, Oliveira TA, Barcellos HHA, Bonan CD, Barcellos LJG (2016) Acute exposure to waterborne psychoactive drugs attract zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 179:37–43

    CAS  Google Scholar 

  • AHFS (2013) AHFS Di Monographs. Drugscom http://www.drugs.com/monograph

  • Airhart MJ, Lee DH, Wilson TD, Miller BE, Miller MN, Skalko RG (2007) Movement disorders and neurochemical changes in zebrafish larvae after bath exposure to fluoxetine (PROZAC). Neurotoxicol Teratol 29:652–664

    CAS  Google Scholar 

  • Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelo D (2012) Monitoring the release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ 438:15–25

    Google Scholar 

  • Barton BA (2002) Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr Comp Biol 42:517–525

    CAS  Google Scholar 

  • Benton CS, Miller BH, Skwerer S, Suzuki O, Schultz LE, Cameron MD, Marron JS, Pletcher MT, Wiltshire T (2012) Evaluating genetic markers and neurobiochemical analytes for fluoxetine response using a panel of mouse inbred strains. Psychopharmacology 221:297–315

    CAS  Google Scholar 

  • Bocquier A, Bezzou K, Nauleau S, Verger P (2008) Dispensing of anxiolytics and hypnotics in southeastern France: demographic factors and determinants of geographic variations. Fundam Clin Pharmacol 22:323–333

    CAS  Google Scholar 

  • Braida D, Donzelli A, Martucci R, Capurro V, Busnelli M, Chini B, Sala M (2012) Neurohypophyseal hormones manipulation modulate social and anxiety related behavior in zebrafish. Psychopharmacology 220:319–330

    CAS  Google Scholar 

  • Brooks BW (2014) Fish on Prozac (and Zoloft): ten years later. Aquat Toxicol 151:61–67

    CAS  Google Scholar 

  • Calisto V, Domingues MRM, Esteves VI (2011) Photodegradation of psychiatric pharmaceuticals in aquatic environments — kinetics and photodegradation products. Water Res 45:6097–6106

    CAS  Google Scholar 

  • Clements S, Schreck CB (2007) Chronic administration of fluoxetine alters locomotor behavior, but does not potentiate the locomotor stimulating effects of CRH in juvenile Chinook salmon (Oncorhynchus tshawytscha). Comp Biochem Physiol A Mol Integr Physiol 147:43–49

    CAS  Google Scholar 

  • Cryan JF, Sweeney FF (2011) The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol 164:1129–1161

    CAS  Google Scholar 

  • Demeestere K, Petrović M, Gros M, Dewulf J, Van Langenhove H, Barceló D (2010) Trace analysis of antidepressants in environmental waters by molecularly imprinted polymer-based solid-phase extraction followed by ultra-performance liquid chromatography coupled to triple quadrupole mass spectrometry. Anal Bioanal Chem 396:825–837

    CAS  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    CAS  Google Scholar 

  • Durant C, Christmas D, Nutt D (2010) The pharmacology of anxiety. In: Stein M, Steckler T (eds) Behavioral neurobiology of anxiety and its treatment, Curr Top Behav Neurosci, vol 2. Springer, Berlin, pp 303–330

    Google Scholar 

  • Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44

    CAS  Google Scholar 

  • Fong PP, Ford AT (2014) The biological effects of antidepressants on the molluscs and crustaceans: a review. Aquat Toxicol 151:4–13

    CAS  Google Scholar 

  • Godwin J, Thompson R (2012) Nonapeptides and social behavior in fishes. Horm Behav 61:230–238

    CAS  Google Scholar 

  • Gould GG, Brooks BW, Frazer A (2007) [3H] citalopram binding to serotonin transporter sites in minnow brains. Basic Clin Pharmacol Toxicol 101:203–210

    CAS  Google Scholar 

  • Griebel G, Belzung C, Perrault G, Sanger DJ (2000) Differences in anxiety-related behaviours and in sensitivity to diazepam in inbred and outbred strains of mice. Psychopharmacology 148:164–170

    CAS  Google Scholar 

  • Grohol J (2012) Top 25 Psychiatric Medication Prescriptions for 2011. Psych Central http://psychcentral.com/lib/top-25-psychiatric-medication-prescriptions-for2011

  • Huang GJ, Ben-David E, Tort Piella A, Edwards A, Flint J, Shifman S (2012) Neurogenomic evidence for a shared mechanism of the antidepressant effects of exercise and chronic fluoxetine in mice. PLoS One 7:e35901. https://doi.org/10.1371/journal.pone.0035901

    Article  CAS  Google Scholar 

  • Jacobson LH, Cryan JF (2010) Genetic approaches to modeling anxiety in animals. In: Stein M, Steckler T (eds) Behavioral neurobiology of anxiety and its treatment, Curr Top Behav Neurosci, vol 2. Springer, Berlin, pp 161–201

    Google Scholar 

  • Kashiyama K, Ito C, Numata H, Goto SG (2010) Spectral sensitivity of light induced hatching and expression of genes mediating photoreception in eggs of the Asian tadpole shrimp Triops granarius. Comp Biochem Physiol A Mol Integr Physiol 156:416–421

    Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LD, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    CAS  Google Scholar 

  • la Poza E, Guadalajara N, Jódar L, Merello P (2013) Modeling Spanish anxiolytic consumption: economic, demographic and behavioral influences. Math Comput Model 57:1619–1624

    Google Scholar 

  • Landgraf R (2005) Neuropeptides in anxiety modulation. In: Holsboer F, Ströhle A (eds) Anxiety and Anxiolytic Drugs, Handbook of Experimental Pharmacology, vol 169. Springer, Berlin, pp 335–369

    Google Scholar 

  • Lee JH, Ko E, Kim YE, Min JY, Liu J, Kim Y, Shin M, Hong M, Bae H (2010) Gene expression profile analysis of genes in rat hippocampus from antidepressant treated rats using DNA microarray. BMC Neurosci 11:152

    CAS  Google Scholar 

  • Li XM, Chlan-Fourney J, Juorio AV, Bennett VL, Shrikhande S, Bowen RC (2000) Antidepressants upregulate messenger RNA levels of the neuroprotective enzyme superoxide dismutase (SOD1). J Psychiatry Neurosci 25:43–47

    CAS  Google Scholar 

  • Lillesaar C (2011) The serotonergic system in fish. J Chem Neuroanat 4:294–308

    Google Scholar 

  • Longone P, Di Michele F, D’Agati E, Romeo E, Pasini A, Rupprecht R (2011) Neurosteroids as neuromodulators in the treatment of anxiety disorders. Front Endocrinol 2:55

    Google Scholar 

  • Magni S, Parolini M, Della Torre C, de Oliveira LF, Catani M, Guzzinati R, Cavazzini A, Binelli A (2017) Multi-biomarker investigation to assess toxicity induced by two antidepressants on Dreissena polymorpha. Sci Total Environ 578:452–459

    CAS  Google Scholar 

  • Margiotta-Casaluci M, Owen SF, Cumming RI, de Polo A, Winter MJ, Panter GH, Rand-Weaver M, Sumpter JP (2014) Quantitative cross-species extrapolation between humans and fish: the case of the anti-depressant fluoxetine. PLoS One. https://doi.org/10.1371/journal.pone.0110467

    Google Scholar 

  • Mennigen JA, Martyniuk CJ, Crump K, Xiong H, Zhao E, Popesku J, Anisman H, Cossins AR, Xia X, Trudeau VL (2008) Effects of fluoxetine on the reproductive axis of female goldfish (Carassius auratus). Physiol Genomics 35:273–282

    CAS  Google Scholar 

  • Metcalfe CD, Chu S, Judt C, Li H, Oakes KD, Servos MR, Andrews DM (2010) Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ Toxicol Chem 29:79–89

    CAS  Google Scholar 

  • Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M (2011) Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci 12:524–538

    CAS  Google Scholar 

  • Njagi J, Ball M, Best M, Wallace KN, Andreescu S (2010) Electrochemical quantification of serotonin in the live embryonic zebrafish intestine. Anal Chem 82:1822–1830

    CAS  Google Scholar 

  • Onaka T, Takayanagi Y, Yoshida M (2012) Roles of oxytocin neurones in the control of stress, energy metabolism, and social behaviour. J Neuroendocrinol 24:587–598

    CAS  Google Scholar 

  • Palmer PM, Wilson LR, O’Keefe P, Sheridan R, King T, Chen CY (2008) Sources of pharmaceutical pollution in the New York City watershed. Sci Total Environ 394:90–102

    CAS  Google Scholar 

  • Park JW, Heah TP, Gouffon JS, Henry TB, Sayler GS (2012) Global gene expression in larval zebrafish (Danio rerio) exposed to selective serotonin reuptake inhibitors (fluoxetine and sertraline) reveals unique expression profiles and potential biomarkers of exposure. Environ Pollut 167:163–170

    CAS  Google Scholar 

  • Parker MO, Annan LV, Kanellopoulos AH, Brock AJ, Combe FJ, Baiamonte M, Teh MT, Brennan CH (2014) The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development. Prog Neuro-Psychopharmacol Biol Psychiatry 55:94–100

    CAS  Google Scholar 

  • Parolini M, Ghilardi A, Della Torre C, Magni S, Prosperi L, Calvagno M, Del Giacco L, Binelli A (2017) Environmental concentrations of cocaine and its main metabolites modulated antioxidant response and caused cyto-genotoxic effects in zebrafish embryo cells. Environ Pollut 226:504–514

    CAS  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2004) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci U S A 101:6222–6225

    CAS  Google Scholar 

  • Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186:362–372

    CAS  Google Scholar 

  • Prieto MJ, Gutierrez HC, Arévalo RA, Chiaramoni NS, del Valle AS (2012) Effect of risperidone and fluoxetine on the movement and neurochemical changes of zebrafish. Open J Med Chem 2:129

    CAS  Google Scholar 

  • Santos LHMLM, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharma-ceuticals in the aquatic environment. J Hazard Mater 175:45–95

    CAS  Google Scholar 

  • Sghendo L, Mifsud J (2012) Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. J Pharm Pharmacol 64:317–325

    CAS  Google Scholar 

  • Silva BF, Jelic A, López-Serna R, Mozeto AA, Petrovic M, Barceló D (2011) Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain. Chemosphere 85:1331–1339

    Google Scholar 

  • Silva LJG, Lino CM, Meisel LM, Pena A (2012) Selective serotonin re-uptake inhibitors (SSRIs) in the aquatic environment: an ecopharmacovigilance approach. Sci Total Environ 437:185–195

    CAS  Google Scholar 

  • Stahl SM (1998) Mechnism of action of serotonin selective reuptake inhibitors: serotonin receptors and pathways mediate therapeutic effects and side effects. J Affect Disord 51:215–235

    CAS  Google Scholar 

  • Styrishave B, Halling-Sørensen B, Ingerslev F (2011) Environmental risk assessment of three selective serotonin reuptake inhibitors in the aquatic environment: a case study including a cocktail scenario. Environ Toxicol Chem 30:254–261

    CAS  Google Scholar 

  • Sztal TE, Ruparelia AA, Williams C, Bryson-Richardson RJ (2016) Using touch-evoked response and locomotion assays to assess muscle performance and function in zebrafish. J Vis Exp:116

  • Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 50:S1–S5

    CAS  Google Scholar 

  • Thorsell A (2008) Central neuropeptide Y in anxiety- and stress-related behavior and in ethanol intake. Ann N Y Acad Sci 1148:136–140

    CAS  Google Scholar 

  • Trent NL, Menard JL (2011) Infusions of neuropeptide Y into the lateral septum reduce anxiety-related behaviors in the rat. Pharmacol Biochem Behav 99:580–590

    CAS  Google Scholar 

  • Udvardi M, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    CAS  Google Scholar 

  • Westenberg HG (2009) Recent advances in understanding and treating social anxiety disorder. CNS Spectr 14:24–33

    Google Scholar 

  • Winder VL, Pennington PL, Hurd MW, Wirth EF (2012) Fluoxetine effects onsheepshead minnow (Cyprinodon variegatus) locomotor activity. J Environ Sci Health B 47:51–58

    CAS  Google Scholar 

  • Wong RY, Oxendine SE, Godwin J (2013) Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. Genomics 14:348

    CAS  Google Scholar 

  • Yoshida N, Maejima Y, Sedbazar U, Ando A, Kurita H, Damdindorj B, Takano E, Gantulga D, Iwasaki Y, Kurashina T, Onaka T, Dezaki K, Nakata M, Mori M, Yada T (2010) Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis." Aging 2: 775-784.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Parolini.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 12 kb)

ESM 2

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parolini, M., Ghilardi, A., De Felice, B. et al. Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio). Environ Sci Pollut Res 26, 34943–34952 (2019). https://doi.org/10.1007/s11356-019-06619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06619-4

Keywords

Navigation