Skip to main content
Log in

Study of the effects of zinc pyrithione in biochemical parameters of the Polychaeta Hediste diversicolor: evidences of neurotoxicity at ecologically relevant concentrations

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nowadays there are various groups of biocidal chemical agents, which can be used in diverse areas, such as personal hygiene, disinfection, antiparasitic action, and also in antifouling mixtures or paints. The versatility and efficacy of some of these agents favors their use and ultimate release into the aquatic environment, where they may still exert toxic activity. Zinc pyrithione is classified as a metal biocide with bactericidal, algicidal, and fungicidal actions. It has been formulated in antifouling paints, which prevent the formation of biofilms in submerged structures, and has also been used for dermocosmetic purposes, in shampoos for the treatment of dandruff and seborrhea. Some of the uses of zinc pyrithione are responsible for its direct release as flakes that reach the bottom sediments, especially in estuarine areas. Considering this fate, the ecotoxicity assessment of its effects towards sediment organisms, namely Polychaetous species, is extremely important. The present study characterized the acute potential toxicity of zinc pyrithione in terms of parameters of oxidative stress (catalase, glutathione S-transferases (GSTs), and thiobarbituric acid reactive substances (TBARS)), and neurotoxicity (acetylcholinesterase) which were evaluated in individuals of the polychaete Hediste diversicolor. Regarding the results obtained, only the activity of GSTs and AChE was significantly altered in relation to non-exposed animals. This set of results indicates that oxidative stress did not occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 6:105–121

    Google Scholar 

  • Ahmad I, Pacheco M, Santos M (2006) Anguilla L. oxidative stress biomarkers: an in situ study of freshwater wetland ecosystem (Pateira de Fermentelos, Portugal). Chemosphere 65(6):952–962

    CAS  Google Scholar 

  • Andries J (2001) Endocrine and environmental control of reproduction in Polychaeta. Can J Zool 79:254–270

    CAS  Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    CAS  Google Scholar 

  • Bao VW, Lui GC, Leung KM (2014) Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Aquat Toxicol 157:81–93. https://doi.org/10.1016/j.aquatox.2014.09.013

    Article  CAS  Google Scholar 

  • Bellas J, Granmo A, Beiras R (2005) Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Mar Pollut Bull 50(11):1382–1385

    CAS  Google Scholar 

  • Bouraoui Z, Banni M, Ghedira J, Clerandeau C, Narbonne JF, Boussetta H (2009) Evaluation of enzymatic biomarkers and lipoperoxidation level in Hediste diversicolor exposed to copper and benzo[a]pyrene. Ecotoxicol Environ Saf 72(7):1893–1898. https://doi.org/10.1016/j.ecoenv.2009.05.011

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    CAS  Google Scholar 

  • Carraway RE, Dobner PR (2012) Zinc pyrithione induces ERK-and PKC-dependent necrosis distinct from TPEN-induced apoptosis in prostate cancer cells. Biochim Biophys Acta (BBA) - Mol Cell Res 1823(2):544–557

    CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142(3):185–194

    CAS  Google Scholar 

  • Cognetti G, Maltagliati F (2000) Biodiversity and adaptive mechanisms in brackish water fauna. Mar Pollut Bull 40(1):7–14 https://doi.org/10.1016/S0025-326X(99)00173-3

    CAS  Google Scholar 

  • Dallas LJ, Turner A, Bean TP, Lyons BP, Jha AN (2018) An integrated approach to assess the impacts of zinc pyrithione at different levels of biological organization in marine mussels. Chemosphere 196:531–539

    CAS  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(6):907–938

    CAS  Google Scholar 

  • Dobretsov S, Teplitski M, Paul V (2009) Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling 25(5):413–427

    CAS  Google Scholar 

  • Doose CA, Ranke J, Stock F, Bottin-Weberm U, Jastorffm B (2004) Structure-activity relationships of pyrithiones: IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogs. Green Chem 6:259–266

    CAS  Google Scholar 

  • Durou C, Mouneyrac C (2007) Linking steroid hormone levels to sexual maturity index and energy reserves in Nereis diversicolor from clean and polluted estuaries. Gen Comp Endocrinol 150:106–113

    CAS  Google Scholar 

  • Ellman G, Courtney DK, Andres JV, Feather-Stone RM (1961) A new rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    CAS  Google Scholar 

  • Fidalgo e Costa P (2003) The oogenic cycle of Nereis diversicolor (OF Müller , 1776) (Annelida: Polychaeta) in shallow water environments in southwestern Portugal. Newsletter of the Spanish Institute of Oceanography 19(1–4):17–29

    Google Scholar 

  • Fidalgo e Costa P, Cancela da Fonseca L, Oliveira RF (2006) Feeding ecology of Nereis diversicolor (OF Müller) (Annelida, Polychaeta) on estuarine and lagoon environments in the southwest coast of Portugal. Pan-Am J Aquat Sci 1(2):114–126

    Google Scholar 

  • Ghribi R, Correia AT, Elleuch B, Nunes B (2019) Toxicity assessment of impacted sediments from southeast coast of Tunisia using a biomarker approach with the polychaete Hediste diversicolor. Arch Environ Contam Toxicol (in press)

  • Gillet P, Mouloud M, Mouneyrac C, Simo P, Gilbert F (2012) Preliminary data on the bioturbation of Hediste diversicolor (Polychaeta, Nereididae) from the Loire Estuary, France. Open Mar Biol J 6:53–56

    Google Scholar 

  • Golding D, Yuwono E (1994) Latent capacities for gametogenic cycling in the semelparous invertebrate Nereis. Proc Natl Acad Sci U S A 91:11777–11781

    CAS  Google Scholar 

  • Gomes T, Gonzalez-Rey M, Rodríguez-Romero A, Trombini C, Riba I, Blasco J, Bebiano MJ (2013) Biomarkers in Nereis diversicolor (Polychaeta: Nereididae) as management tools for environmental assessment on the southwest Iberian coast. Sci Mar 77S1:69–78

    Google Scholar 

  • Grunnet KS, Dahllof I (2005) Environmental fate of the antifouling compound zinc pyrithione in seawater. Environ Toxicol Chem 24:3001–3006

    CAS  Google Scholar 

  • Guardiola FA, Cuesta A, Mesequer A, Esteban MA (2012) Risks of using antifouling biocides in aquaculture. Int J Mol Sci 13(2):1541–1560

    CAS  Google Scholar 

  • Gule NP, Begum NM, Klumperman B (2016) Advances in biofouling mitigation: a review. Crit Rev Environ Sci Technol 46(6):535–555 https://doi.org/10.1080/10643389.2015.1114444

    CAS  Google Scholar 

  • Gulick AM, Fahl WE (1995) Mammalian glutathione S-transferase: regulation of an enzyme system to achieve chemotherapeutic efficacy. Pharmacol Ther 66(2):237–257

    CAS  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferases—the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. In: Halliwell B, and Gutteridge JMC (eds) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford, p 1–25

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defense against oxidative stress. Free Radic Res 31:273–300

    CAS  Google Scholar 

  • Hayes J, Flanagan J, Jowsey I (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    CAS  Google Scholar 

  • Imokawa G, Shimizu H, Okamoto K (1982) Antimicrobial effect of zinc pyrithione. J Soc Cosmet Chem 33:27–37

    CAS  Google Scholar 

  • Leticia AG, Gerardo G-B (2008) Determination of esterase activity and characterization of cholinesterases in the reef fish Haemulon plumieri. Ecotoxicol Environ Saf 71(3):787–797. https://doi.org/10.1016/j.ecoenv.2008.01.024

  • Lima ES, Abdalla DSP (2001) Lipid peroxidation: mechanism and evaluation in biological samples [online]. Available at <http://www.rbcf.usp.br/edicoes/Volumes/V37N3/PDF/v37n3p293-303.PDF>

  • Lindqvist S, Gilbert F, Eriksson SP, Hulth S (2013) Activities by Hediste diversicolor under different light regimes: experimental quantification of particle reworking using time-resolved imaging. J Exp Mar Biol Ecol 448:240–249

    Google Scholar 

  • Mackie DS, Van den Berg CM, Readman JW (2004) Determination of pyrithione in natural waters by cathodic stripping voltammetry. Anal Chim Acta 511(1):47–53

    CAS  Google Scholar 

  • Marcheselli M, Rustichelli C, Mauri M (2010a) Novel antifouling agent zinc pyrithione: determination, acute toxicity, and bioaccumulation in marine mussels (Mytilus galloprovincialis). Environ Toxicol Chem 29(11):2583–2592

    CAS  Google Scholar 

  • Marcheselli M, Conzo F, Mauri F, Simonini R (2010b) Novel antifouling agent—zinc pyrithione: short- and long-term effects on survival and reproduction of the marine polychaete Dinophilus gyrociliatus. Aquat Toxicol 98(2):204–210

    CAS  Google Scholar 

  • Marcheselli M, Azzoni P, Mauri M (2011) Novel antifouling agent-zinc pyrithione: stress induction and genotoxicity to the marine mussel Mytilus galloprovincialis. Aquat Toxicol 102(1–2):39–47

    CAS  Google Scholar 

  • Meiniel R (1981) Neuromuscular blocking agents and axial teratogenesis in the avian embryo: can axial morphogenetic disorders be explained by pharmacological action upon muscle tissue? Teratology 23:259–271

  • Mo J, Lin D, Wang J, Li P, Liu W (2018) Apoptosis in HepG2 cells induced by zinc pyrithione via mitochondrial dysfunction pathway: involvement of zinc accumulation and oxidative stress. Ecotoxicol Environ Saf 161:515–525

    CAS  Google Scholar 

  • Mochida K, Ito K, Harino H, Kakuno A, Fujii K (2006) Acute toxicity of pyrithione antifouling biocides and joint toxicity with copper to red sea bream (Pagrus major) and toy shrimp (Heptacarpus futilirostris). Environ Toxicol Chem 25(11):3058–3064

    Google Scholar 

  • Mochida K, Ito K, Harino H, Onduka T, Kakuno A, Fujii K (2008). Early life-stage toxicity test for copper pyrithione and induction of skeletal anomaly in a teleost, the mummichog (Fundulus heteroclitus). Environ Toxicol Chem 27(2):367–374. https://doi.org/10.1897/07-176R1.1

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2005) Lehninger: principles of biochemistry. WH Freeman and Company, New York

    Google Scholar 

  • Nogueira AF, Pereira JL, Antunes SC, Gonçalves FJM, Nunes B (2018) Effects of zinc pyrithione on biochemical parameters of the freshwater Asian clam Corbicula fluminea. Aquat Toxicol 204:100–106. https://doi.org/10.1016/j.aquatox.2018.08.021

    Article  CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2003) Characterization of total head cholinesterases of Gambusia holbrooki (mosquitofish), and the assessment of effects induced by two environmental contaminants. J Vet Pharmacol Ther 26(Suppl. 1):260–261

  • Nunes B, Carvalho F, Guilhermino L (2004). Acute and chronic effects of clofibrate and clofibric acid over Gambusia holbrooki. Chemosphere 57:1581–1589. https://doi.org/10.1016/j.chemosphere.2004.09.018

  • Nunes B, Braga MR, Campos JC, Gomes R, Ramos AS, Antunes SC, Correia AT (2015) Ecotoxicological effect of zinc pyrithione in the freshwater fish Gambusia holbrooki. Ecotoxicology 24(9):1896–1905

    CAS  Google Scholar 

  • Nunes B, Vidal D, Barbosa I, Soares AMVM, Freitas R (2016) Pollution effects on biochemical pathways determined in the polychaete Hediste diversicolor collected in three Portuguese estuaries. Environ Sci Processes Impacts 18:1208–1219

    CAS  Google Scholar 

  • Ohji M, Harino H (2017) Comparison of toxicities of metal pyrithiones including their degradation compounds and organotin antifouling biocides to the Japanese killifish Oryzias latipes. Arch Environ Contam Toxicol 73:285–293

    CAS  Google Scholar 

  • Oyama TM, Saito M, Yonezama T, Okano Y, Oyama Y (2012) Nanomolar concentrations of zinc pyrithione increase cell susceptibility to oxidative stress induced by hydrogen peroxide in rat thymocytes. Chemosphere 87(11):1316–1322

    CAS  Google Scholar 

  • Papastregiadis A, Mubiru E, Van Laugenhove H, De Meulenaer B (2012) Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarboturic acid reactive substances (TBARS) test in various food. J Agric Food Chem 60(38):9589–9594

    Google Scholar 

  • Rangel LF (2008) Metazoan parasites of polychaetes (Nereis diversicolor and Diopatra neapolitana) from Ria de Aveiro. Master’s dissertation in applied ecology. Faculty of Sciences, University of Porto. 105 pp.

  • Reeder NL, Xu J, Youngquist RS, Schwartz JR, Rust RC, Saunders CW (2011) The antifungal mechanism of action of zinc pyrithione. Br J Dermatol 165(Suppl. 2):9–12

    CAS  Google Scholar 

  • Ren T, Fu G-H, Liu T-F, Hu K, Li H-R, Fang W-H, Yang X-L (2017) Toxicity and accumulation of zinc pyrithione in the liver and kidneys of Carassius auratus gibelio: association with P-glycoprotein expression. Fish Physiol Biochem 43:1–9

    CAS  Google Scholar 

  • Rudolf E, Cervinka M (2011) Stress responses of human dermal fibroblasts exposed to zinc pyrithione. Toxicol Lett 204(2–3):164–173

    CAS  Google Scholar 

  • Sakkas VA, Shibata K, Yamaguchi Y, Sugasawa S, Albanis T (2007) Aqueous phototransformation of zinc pyrithione: degradation kinetics and byproduct identification by liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 1144(2):175–182

    CAS  Google Scholar 

  • Scaps P (2002) A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida: Polychaeta). Hydrobiologia 470(1):203–218. https://doi.org/10.1023/A:1015681605656

    Article  Google Scholar 

  • Schwartz JR, Shah R, Krigbaum H, Sacha J, Vogt A, Blume-Peytavi U (2011). New insights on dandruff/seborrhoeic dermatitis: the role of the scalp follicular infundibulum in effective treatment strategies. Br J Dermatol 165(Suppl. 2):18–23. https://doi.org/10.1111/j.1365-2133.2011.10573.x.

  • Shahidi F, Hong C (1991) Evaluation of malonaldehyde as a marker of oxidative rancidity in meat products. J Food Biochem 15(2):97–105

    CAS  Google Scholar 

  • Stegeman JJ, Brouwer M, Richard TDG, Förlin L, Fowler BA, Sanders BM, van Veld PA (1992) Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. In: Huggett RJ, Kimerly RA, Mehrle PM Jr, Bergman HL (eds) Biomarkers: Biochemical

    Google Scholar 

  • Tarladgis BG, Watts BM, Younathan MT, Dugan L (1960) A distillation method for the quantitative determination of malonaldehyde in rancid foods. J Am Oil Chem Soc 37(1):44–48

    CAS  Google Scholar 

  • Thomas KV, Brooks S (2010) The environmental fate and effects of antifouling paint biocides. Biofouling 26(1):73–88

    CAS  Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC (2000) Pyrithiones as antifouling: environmental chemistry and preliminary assessment. Biofouling 15:175–182

    CAS  Google Scholar 

  • Turley PA, Fenn RJ, Ritter JC, Callow ME (2005) Pyrithiones as antifoulants: environmental fate and loss of toxicity. Biofouling 21(1):31–40

    CAS  Google Scholar 

  • Virgilio M, Abbiati M (2004) Habitat discontinuity and genetic structure in population of the estuarine species Hediste diversicolor (Polychaeta: Nereididae). Estuar Coast Shelf Sci 61:361–367

    Google Scholar 

  • Virgilio M, Fauvelot C, Costantini F, Abbiati M, Backeljau T (2009) Phylogeography of the common ragworm Hediste diversicolor (Polychaeta: Nereididae) reveals cryptic diversity and multiple colonization events across its distribution. Mol Ecol 18:1980–1994

    CAS  Google Scholar 

  • Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology- past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50(2):75–104

    CAS  Google Scholar 

  • Zhao Y, Liu Y, Sun J, Sha H, Yang Y, Ye Q, Yang Q, Huang B, Yu Y, Huang H (2018) Acute toxic responses of embryo-larval zebrafish to zinc pyrithione (ZPT) reveal embryological and developmental toxicity. Chemosphere 205:62–70. https://doi.org/10.1016/j.chemosphere.2018.04.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Bruno Nunes was hired through the Investigator FCT program (IF/01744/2013). Thanks also due to CESAM (UID/AMB/50017) for financial support and FCT through national funds and co-funding FEDER, within the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nunes.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, B., Costa, M. Study of the effects of zinc pyrithione in biochemical parameters of the Polychaeta Hediste diversicolor: evidences of neurotoxicity at ecologically relevant concentrations. Environ Sci Pollut Res 26, 13551–13559 (2019). https://doi.org/10.1007/s11356-019-04810-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04810-1

Keywords

Navigation