Skip to main content

Advertisement

Log in

Toxicological aspects of trihalomethanes: a systematic review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Chlorine is considered the most used chemical agent for water disinfection worldwide. However, water chlorination can lead to by-product generation which can be toxic to humans. The present study aimed to perform a systematic review on the toxicity of trihalomethanes (THMs) through bioindicators of cytotoxicity, genotoxicity, and mutagenicity. The results showed that studies on the effects of THMs on DNA are a current research concern for evaluating the toxicity of the pure compounds and real samples involving several types including water for recreational use, reused water, and drinking water. THMs deleterious effects have been assessed using several biosystems, where the Ames test along with experimental animal models were the most cited. A wide range of THM concentrations have been tested. Nevertheless, DNA damage was demonstrated, highlighting the potential human health risk. Among the studied THMs, chloroform presented a different action mechanism when compared with brominated THMs, with the former being cytotoxic while brominated THMs (bromodichloromethane, bromoform, and dibromochloromethane) were cytotoxic, genotoxic, and mutagenic. The described evidence in this research highlights the relevance of this topic as a human health issue. Nevertheless, research aimed to represent THMs current exposure conditions in a more accurate way would be needed to understand the real impact on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abda A, Benouareth DE, Tabet M, Liman R, Konuk M, Khallef M, Taher A (2015) Mutagenicity and genotoxicity of drinking water in Guelma region, Algeria. Environ Monit Assess 187(21):1–15

    CAS  Google Scholar 

  • Allard S, Tan J, Joll CA, Von Gunten U (2015) Mechanistic study on the formation of Cl-/Br-/I-trihalomethanes during chlorination/chloramination combined with a theoretical cytotoxicity evaluation. Environ Sci Technol 49(18):11105–11114

    Article  CAS  Google Scholar 

  • Ames BN, Mccann J, Yamasaki EDITH (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364

    Article  CAS  Google Scholar 

  • Auttachoat W, Germolec DR, Collins BJ, Luebke RW, White KL Jr, Guo TL (2009) Immunotoxicological profile of chloroform in female B6C3F1 mice when administered in drinking water. Drug Chem Toxicol 32(1):77–87

    Article  CAS  Google Scholar 

  • Backer L, Ashley D, Bonin M, Cardinali F, Kieszak S, Wooten J (2000) Household exposures to drinking water disinfection by-products: whole blood trihalomethane levels. J Expo Anal Environ Epidemiol 10:321–326

    Article  CAS  Google Scholar 

  • Bellar, TA, Lichtenberg, JJ, Kroner, RC (1974) The occurrence of organohalides in chlorinated drinking waters. J AWWA 66:703–706

  • Bolognesi C, Knasmueller S, Nersesyan A, Thomas P, Fenech M (2013) The HUMNxl scoring criteria for different cell types and nuclear anomalies in the buccal micronucleus cytome assay - an update and expanded photogallery. Mutat Res 753:100–113

    Article  CAS  Google Scholar 

  • Boorman, GA, Dellarco, V, Dunnick, JK, Chapin, RE, Hunter, S, Hauchman, F, Gardner, H, Cox, M, Sills, RC (1999) Drinking water disinfection byproducs: review and approach to toxicity evaluation. Environ Health Persp 107:207–217

  • Brennan RJ, Schiestl RH (1998) Chloroform and carbon tetrachloride induce intrachromosomal recombination and oxidative free radicals in Saccharomyces cerevisiae. Mutat Res 397(2):271–278

    Article  CAS  Google Scholar 

  • Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A, Garcia-Closas R, Serra C, Carrato A, Castaño-Vinyals G, Samanic C, Rothman N, Kogevinas M (2010) Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environ Health Perspect 118:1545–1550

    Article  CAS  Google Scholar 

  • Ceretti E, Moretti M, Zerbini I, Villarini M, Zani C, Monarca S, Feretti D (2016) Occurrence and control of genotoxins in drinking water: a monitoring proposal. J Public Health Res 5(769):116–121

    Google Scholar 

  • Charrois JWA, Hrudey SE (2007) Breakpoint chlorination and free-chlorine contact time: implications for drinking water N- nitrosodimethylamine concentrations. Water Res 41(3):674–682

    Article  CAS  Google Scholar 

  • Claxton LD, Pegram R, Schenck KM, Simmons JE, Warren SH (2008) Integrated disinfection by-products research: Salmonella mutagenicity of water concentrates disinfected by chlorination and ozonation/postchlorination. J Toxic Environ Health A 71(17):1187–1194

    Article  CAS  Google Scholar 

  • Coffin JC, Ge R, Yang S, Kramer PM, Tao L, Pereira MA (2000) Effect of trihalomethanes on cell proliferation and DNA methylation in female B6C3F1 mouse liver. Toxicol Sci 252:243–252

    Article  Google Scholar 

  • DeMarini DM, Abu-shakra A, Felton CF, Patterson KS (1995) Mutation spectra in Salmonella of chlorinated, chloraminated, or ozonated drinking water extracts: comparison to MX. Environ Mol Mutagen 26:270–285

    Article  CAS  Google Scholar 

  • DeMarini DM, Shelton ML, Warren SH, Ross TM, Shim JY, Richard AM, Pegram RA (1997) Glutathione S-transferase-mediated induction of GC → AT transitions by halomethanes in salmonella. Environ Mol Mutagen 30(4):440–447

    Article  CAS  Google Scholar 

  • Egito LCM, Medeiros MG, Medeiros SRB, Agnez-Lima LF (2007) Cytotoxic and genotoxic potential of surface water from the Pitimbu river, northeastern/RN Brazil. Genet Mol Biol 30(2):435–441

    Article  CAS  Google Scholar 

  • Faustino-Rocha AI, Rodrigues D, Costa RG, Diniz C, Aragão S, Talhada D, Botelho M, Colaço A, Pires MJ, Peixoto F, Oliveira PA (2016) Trihalomethanes in liver pathology: mitochondrial dysfunction and oxidative stress in the mouse. Environ Toxicol 31(8):1009–1016

    Article  CAS  Google Scholar 

  • Fisher D, Yonkos L, Ziegler G, Friedel E, Burton D (2014) Acute and chronic toxicity of selected disinfection byproducts to Daphnia magna, Cyprinodon variegatus, and Isochrysis galbana. Water Res 55:233–244

    Article  CAS  Google Scholar 

  • Fujie K, Aoki T, Wada M (1990) Acute and subacute cytogenetic effects of the trihalomethanes on rat bone marrow cells in vivo. Mutat Res 242:111–119

    Article  CAS  Google Scholar 

  • Gaylard CC, Belinaso ML, Manfio GP (2005) Aspectos biologicos e técnicos da biorremediaçao de xenobióticos. Biotecnologia ciência e desenvolvimento 34:36–43 (in Portuguese)

    Google Scholar 

  • Geter DR, Chang LW, Hanley NM, Ross MK, Pegram RA, DeAngelo AB (2004) Analysis of in vivo and in vitro DNA strand breaks from trihalomethane exposure. J Carcinog 3(1):2

    Article  Google Scholar 

  • Golden RJ, Holm SE, Robinson D, Julkunen PH, Reese EA (1997) Chloroform mode of action: implications for cancer risk assessment. Regul Toxicol Pharmacol 26:142–155

    Article  CAS  Google Scholar 

  • Goslan EH, Krasner SW, Bower M, Rocks SA, Holmesa P, Levy LS, Parsons SA (2009) A comparaison of disinfection by- products found in chlorinated and chloraminated drinking water in Scotland. Water Res 43:4698–4706

    Article  CAS  Google Scholar 

  • Gruau G (2004) Les sous-produits chlore´s dans les eaux destine ´es a` l’alimentation humaine. Rapport d’e´tude remis a` la DRASS Bretagne et a` la re´gion Bretagne. 30 september 2004. CAREN, UMR 6118 Ge´osciences Rennes, Rennes/France human cells. Mutat Res 513:151–157

    Google Scholar 

  • Guzzella L, Monarca S, Zani C, Feretti D, Zerbini I, Buschini A, Poli P, Rossi C, Richardson SD (2004) In vitro potential genotoxic effects of surface drinking water treated with chlorine and alternative disinfectants. Mutat Res 564(2):179–193

    Article  CAS  Google Scholar 

  • Hansen KMS, Willach S, Antoniou MG, Mosbæk H, Albrechtsen HJ, Andersen HR (2012a) Effect of pH on the formation of disinfection byproducts in swimming pool water - Is less THM better? Water Res 46(19):6399–6409

    Article  CAS  Google Scholar 

  • Hansen KMS, Willach S, Mosbæk H, Andersen HR (2012b) Particles in swimming pool filters - does pH determine the DBP formation? Chemosphere 87(3):241–247

    Article  CAS  Google Scholar 

  • Health Canada (2017). Guidelines for Canadian Drinking Water Quality Summary Table. Federal-Provincial-Territorial Committee on Drinking Water. Available from: https://www.canada.ca/ content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_ recom /sum_guide-res_recom-eng.pdf (accessed 7.4.2018)

  • Hrudey SE (2009) Chlorination disinfection by-products, public health risk tradeoffs and me. Water Res 43(8):2057–2092

    Article  CAS  Google Scholar 

  • IARC-International Agency for Research on Cancer (1999) Some chemicals that cause tumours of the kidney or urinary bladder in rodents and some other substances. In: IARC monographs on evaluation of carcinogenic risks in humans, vol. 73. International Agency for Research on Cancer, Lyon, France

  • IARC-International Agency for Research on Cancer (2003) Some drinking-water disinfectants and contaminants, including arsenic. In: IARC Monographs on Evaluation of Carcinogenic Risks in Humans, vol 84. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Kargalioglu Y, Mcmillan BJ, Minear RA, Plewa MJ (2002) Analysis of the cytotoxicity and mutagenicity of drinking water disinfection by-products in Salmonella typhimurium. Teratog Carcinog Mutagen 22:113–128

    Article  CAS  Google Scholar 

  • Keegan TE, Simmons JE, Pegram RA (1998) Noael and Loael determinations of acute hepatotoxicity for chloroform and bromodichloromethane delivered in an aqueous vehicle to F344 rats. J Toxic Environ Health A 55(1):65–75

    Article  CAS  Google Scholar 

  • Kogevinas M, Villanueva CM, Font-Ribera L, Liviac D, Bustamante M, Espinoza F, Nieuwenhuijsen MJ, Espinosa A, Fernandez P, DeMarini DM, Grimalt JO, Grummt T, Marcos R (2010) Genotoxic effects in swimmers exposed to disinfection by-products in indoor swimming pools. Environ Health Perspect 118(11):1531–1537

    Article  CAS  Google Scholar 

  • Krasner SW, McGuire MJ, Jacangelo JG, Patania NL, Reagan KM, Aieta EM (1989) The occurrence of disinfection by-products in US drinking water. J Am Water Works Assoc:41–53

  • Krasner SW, Weinberg HS, Richardson SD, Pastor SJ, Chinn RL, Sclimenti MJ, Onstad GD, Thruston AD Jr (2006) Occurrence of a new generation of disinfection byproducts. Environ Sci Technol 40(23):7175–7185

    Article  CAS  Google Scholar 

  • Krasner SW, Lee TCF, Westerhoff P, Fischer N, Hanigan D, Karanfil T, Beita-Sandí W, Taylor-Edmonds L, Andrews RC (2016) Granular activated carbon treatment may result in higher predicted genotoxicity in the presence of bromide. Environ Sci Technol 50(17):9583–9591

    Article  CAS  Google Scholar 

  • Kumari M, Gupta SK, Mishra BK (2015) Multi-exposure cancer and non-cancer risk assessment of trihalomethanes in drinking water supplies - A case study of Eastern region of India. Ecotoxicol Environ Saf 113:433–438

    Article  CAS  Google Scholar 

  • Kundu B, Richardson SD, Granville CA, Shaughnessy DT, Hanley NM, Swartz PD, Richard AM, DeMarini DM (2004) Comparative mutagenicity of halomethanes and halonitromethanes in Salmonella TA100 : structure – activity analysis and mutation spectra. Mutat Res 554:335–350

    Article  CAS  Google Scholar 

  • Lafrentz B, Lapatra S, Call D, Wiens G, Cain K (2009) Proteomic analysis of Flavobacterium psychrophilum cultured in vivo and in iron-limited media. Dis Aquat Org 87:171–182

    Article  CAS  Google Scholar 

  • Landi S, Hanley NM, Kligerman AD, Demarini DM (1999a) Induction of sister chromatid exchanges in human peripheral blood lymphocytes by bromoform: Investigation of the role of GSTT1-1 polymorphism. Mutat Res 429(2):261–267

    Article  CAS  Google Scholar 

  • Landi S, Hanley NM, Warren SH, Pegram RA, Demarini DM (1999b) Induction of genetic damage in human lymphocytes and mutations in Salmonella by trihalomethanes : role of red blood cells and GSTT1-1 polymorphism. Mutagenesis 14(5):479–482

    Article  CAS  Google Scholar 

  • Landi S, Naccarati A, Ross MK, Hanley NM, Dailey L, Devlin RB, Vasquez M, Pegram RA, DeMarini DM (2003) Induction of DNA strand breaks by trihalomethanes in primary human lung epithelial cells. Mutat Res 538(1-2):41–50

    Article  CAS  Google Scholar 

  • Lapolli FR, Hassemer MEN, Camargo JG, Damásio DL, Lobo-recio MÁ (2005) Disinfection of domestic wastewater using chlorine dioxide. Engenharia Sanitária e Ambiental 10(3):200–208

    Article  Google Scholar 

  • Leavens TL, Blount BC, Demarini DM, Madden MC, Valentine JL, Case MW et al (2007) Disposition of Bromodichloromethane in Humans Following Oral and Dermal Exposure. Toxicol Sci 99(2):432–445

    Article  CAS  Google Scholar 

  • Lilly PD, Simmons JE, Pegram RA (1994) Dose-dependent vehicle differesnces in the acute toxicity of bromodichloromethane. Fundam Appl Toxicol 23:132–140

    Article  CAS  Google Scholar 

  • Lu WQ, Chen XN, Yue F, Jenter C, Gminski R, Li XY, Xie H, Mersch-Sundermann V (2002) Studies on the in vivo and in vitro mutagenicity and the lipid peroxidation of chlorinated surface (drinking) water in rats and metabolically competent. Mutat Res 513(1-2):151–157

    Article  CAS  Google Scholar 

  • Lynberg M, Nuckols JR, Langlois P, Ashley D, Singer P, Mendola P, Wilkes C, Krapfl H, Miles E, Speight V, Lin B, Small L, Miles A, Bonin M, Zeitz P, Tadkod A, Henry J, Forrester MB (2001) Assessing exposure to disinfection by-products in women of reproductive age living in Corpus Christi, Texas, and Cobb county, Georgia: descriptive results and methods. Environ Health Perspect 109:597–604

    Article  CAS  Google Scholar 

  • Manasfi T, De Méo M, Coulomb B, Di Giorgio C, Boudenne JL (2016) Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environ Int 88:94–102

    Article  CAS  Google Scholar 

  • McDonald TA, Komulainen H (2005) Carcinogenicity of the chlorination disinfection by-product MX. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 23(2):163–214

    Article  CAS  Google Scholar 

  • McKie MJ, Taylor-Edmonds L, Andrews SA, Andrews RC (2015) Engineered biofiltration for the removal of disinfection by-product precursors and genotoxicity. Water Res 81:196–207

    Article  CAS  Google Scholar 

  • Meier JR (1988) Genotoxic activity of organic chemicals in drinking water. Mutat Res 196:211–245

    Article  CAS  Google Scholar 

  • Monarca S, Richardson SD, Feretti D, Grottolo M, Thruston G Jr, Zani AD, Navazio C, Zerbini G, Ragazzo I, Alberti PA (2002) Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environ Toxicol Chem 21(2):309–318

    Article  CAS  Google Scholar 

  • Monarca S, Zani C, Richardson SD, ADJr T, Moretti M, Feretti D, Villarini M (2004) A new approach to evaluating the toxicity and genotoxicity of disinfected drinking water. Water Res 38:3809–3819

    Article  CAS  Google Scholar 

  • Morris RD, Audet AM, Angelillo IF, Chalmers TC, Mosteller F (1992) Chlorination, chlorination by-products, and cancer: a meta-analysi. Am J Public Health 82(7):955–963

    Article  CAS  Google Scholar 

  • Myllykangas T, Nissinen TK, Mäki-Paakkanen J, Hirvonen A, Vartiainen T (2003) Bromide affecting drinking water mutagenicity. Chemosphere 53(7):745–756

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen MJ, Toledano MB, Eaton NE, Fawell J, Elliott P (2000) Chlorination disinfection by-products in water and their association with adverse reproductive outcomes: a review. Occup Environ Med 57(2):73–85

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen MJ, Martinez D, Grellier J, Bennett J, Best N, Iszatt N et al (2009a) Review chlorination disinfection by-products in drinking water and congenital anomalies : review and meta-analyses. Environ Health Perspect 117(10):1486–1493

    Article  CAS  Google Scholar 

  • Nieuwenhuijsen M, Grellier J, Smith R, Iszatt N, Bennett J, Best N, Toledano M (2009b) The epidemiology and possible mechanisms of disinfection by-products in drinking water. Phil Trans R Soc A 367:4043–4076

    Article  CAS  Google Scholar 

  • Nobukawa T, Sanukida S (2001) Effect of bromide ions on genotoxicity of halogenated by-products from chlorination of humic acid in water. Water Res 35(18):4293–4298

    Article  CAS  Google Scholar 

  • NTP - National Toxicology Program (2006). Toxicology and Carcinogenesis Studies of Bromodichloromethane (CAS No. 75-27-4) in Male F344/N Rats and Female B6C3F1 Mice (Drinking Water Studies). National Toxicology Program, Research Triangle Park, NC

  • NTP - National Toxicology Program (2007). Report on the Toxicology Studies of ( Fvb Tg . Ac Hemizygous ) Mice ( Dermal , Drinking Water , And Gavage Studies ) and Carcinogenicity Studies of Bromodichloromethane (Drinking Water and Gavage Studies). National Toxicology Program, (75)

  • Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149

    Article  CAS  Google Scholar 

  • Pagé-Larivière F, Tremblay A, Campagna C, Rodriguez MJ, Sirard MA (2016) Low concentrations of bromodichloromethane induce a toxicogenomic response in porcine embryos in vitro. Reprod Toxicol 66:44–55

    Article  CAS  Google Scholar 

  • Parinet J, Tabaries S, Coulomb B, Vassalo L, Boudenne J (2011) Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Res 46(3):828–836

    Article  CAS  Google Scholar 

  • Park KY, Choi SY, Lee SH, Kweon JH, Song JH (2016) Comparison of formation of disinfection by-products by chlorination and ozonation of wastewater effluents and their toxicity to Daphnia magna. Environ Pollut 215:314–321

    Article  CAS  Google Scholar 

  • Pegram RA, Andersen ME, Warren SH, Ross TM, Claxton LD (1997) Glutathione S-transferase-mediated mutagenicity of trihalomethanes in Salmonella typhimurium: contrasting results with bromodichloromethane of chloroform. Toxicol Appl Pharmacol 144(1):183–188

    Article  CAS  Google Scholar 

  • Pignata C, Fea E, Rovere R, Degan R, Lorenzi E, De Ceglia M et al (2012) Chlorination in a wastewater treatment plant: acute toxicity effects of the effluent and of the recipient water body. Environ Monit Assess 184(4):2091–2103

    Article  CAS  Google Scholar 

  • Plewa MJ, Kargalioglu Y, Vankerk D, Minear RA, Wagner ED (2002) Mammalian cell cytotoxicity analysis of drinking water disinfection by-products. Environ Mol Mutagen 40:134–142

    Article  CAS  Google Scholar 

  • Plewa MJ, Wagner ED, Mitch WA (2011) Comparative mammalian cell cytotoxicity of water concentrates from disinfected recreational pools. Environ Sci Technol 45(9):4159–4165

    Article  CAS  Google Scholar 

  • Potter CL, Chang LW, Deangelo AB, Daniel FB (1996) Effects of four trihalomethanes on DNA strand breaks, renal hyaline droplet formation and serum testosterone in male F-344 rats. Cancer Lett 106(2):235–242

    Article  CAS  Google Scholar 

  • Ranmuthugala G, Pilotto L, Smith W, Vimalasiri T, Dear K, Douglas R (2003) Chlorinated drinking water and micronuclei in urinary bladder epithelial cells. Epidemiology 14(5):617–622

    Article  Google Scholar 

  • Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636(1-3):178–242

    Article  CAS  Google Scholar 

  • Richardson SD, DeMarini DM, Kogevinas M, Fernandez P, Marco E, Lourencetti C et al (2010) What’s in the pool? a comprehensive identification of disinfection by-products and assessment of mutagenicity of chlorinated and brominated swimming pool water. Environ Health Perspect 118(11):1523–1530

    Article  CAS  Google Scholar 

  • Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Water Treat Exam 23:234–243

    Google Scholar 

  • Rosenthal SL (1987) A review of the mutagenicity of chloroform. Environ Mol Mutagen 226:211–226

    Article  Google Scholar 

  • Ross MK, Pegram RA (2004) In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1. Toxicol Appl Pharmacol 195(2):166–181

    Article  CAS  Google Scholar 

  • Sanches SM, Silva CHTP, Vieira EM (2003) Alternative Disinfectant Agents for Water Treatment. Química Nova na Escola 17

  • Sapone A, Gustavino B, Monfrinotti M, Canistro D, Broccoli M, Pozzetti L, Affatato A, Valgimigli L, Forti GC, Pedulli GF, Biagi GL, Abdel-Rahman SZ, Paolini M (2007) Perturbation of cytochrome P450, generation of oxidative stress and induction of DNA damage in Cyprinus carpio exposed in situ to potable surface water. Mutat Res 626(1-2):143–154

    Article  CAS  Google Scholar 

  • Sen DJ, Shishoo CJ, Lahiri A (2011) Three musketeers of genotoxicity: carcinogen, mutagen and teratogen. NSHM J Pharm Healthcare Manage 2:13–25

    Google Scholar 

  • Silva RCA, Araújo TM (2003) Groundwater quality in urban areas of Feira de Santana, State of Bahia. Ciência e Saúde Coletiva 9(4):1019–1028

    Article  Google Scholar 

  • Singer PC (1993) Formation and characterization of disinfection by-products. In: Craun GF. Safety of water desinfection: balancing chemical and microbial risks. ILSI Press, Washington (DC), pp 201–219

    Google Scholar 

  • Stalter D, Dutt M, Escher BI (2013) Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products. Chem Res Toxicol 26(11):1605–1614

    Article  CAS  Google Scholar 

  • Stalter D, Malley EO, UVon G, Escher BI (2016) Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Res 91:19–30

    Article  CAS  Google Scholar 

  • Symons GE (2006) Water treatment through the ages. J Am Water Works Assoc 98(3):87–98

    Article  CAS  Google Scholar 

  • Thier R, Taylort JB, Pemblet SE, Humphreys WG, Persmark M, Ketterert B, Guengerich FP (1993) Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. 90(September):8576–8580

  • Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2009) Buccal micronucleus cytome assay. Nat Protoc 4:825–837

    Article  CAS  Google Scholar 

  • USEPA (1999) EPA 815-R-99-014: Alternative disinfectants and oxidants guidance manual. EPA Office of Water, Washington, D.C.

  • USEPA (2003). IRIS—Integrated Risk Information System, http://www.epa.gov/iriswebp/iris/index/html

  • Villanueva CM, Kogevinas M, Grimalt JO (2001) Cloración del agua potable y efectos sobre la salud: revisión de estudios epidemiológicos. Med Clin 117(1):27–36

    Article  CAS  Google Scholar 

  • Villanueva CM, Cantor KP, Grimalt JO, Malats N, Silverman D, Tardon A et al (2007) Bladder cancer and exposure to water disinfection by-products through ingestion, bathing, showering, and swimming in pools. American J Epidemiol 165(2):148–156

    Article  Google Scholar 

  • Wada K, Fukuyama T, Nakashima N, Matsumoto K (2015) Assessment of the in vivo genotoxicity of cadmium chloride , chloroform , and d , l -menthol as coded test chemicals using the alkaline comet assay. Mutat Res 786-788:114–119

    Article  CAS  Google Scholar 

  • Wang D, Xu Z, Zhao Y, Yan X, Shi J (2011) Change of genotoxicity for raw and finished water: role of purification processes. Chemosphere 83(1):14–20

    Article  CAS  Google Scholar 

  • Watson K, Shaw G, Leusch FDL, Knight NL (2012) Chlorine disinfection by-products in wastewater effluent: bioassay-based assessment of toxicological impact. Water Res 46(18):6069–6083

    Article  CAS  Google Scholar 

  • WHO - World Health Organization (2000). Disinfectants and disinfectants by products. Geneva: - United Nations Environment Programme 36-37

  • WHO - World Health Organization (2011). Guidelines for drinking-water quality. 4. Ed. Geneva: WHO

  • Wu MN, Wang XC, Ma XY (2013) Characteristics of THMFP increase in secondary effluent and its potential toxicity. J Hazard Mater 261:325–331

    Article  CAS  Google Scholar 

  • Yan M, Li M, Han X (2016) Behaviour of I/Br/Cl-THMs and their projected toxicities under simulated cooking conditions: effects of heating, table salt and residual chlorine. J Hazard Mater 314:105–112

    Article  CAS  Google Scholar 

  • Yasunaga K, Kiyonari A, Oikawa T, Abe N, Yoshikawa K, Samples NTP et al (2004) Evaluation of the Salmonella umu Test With 83 NTP Chemicals. Environ Mol Mutagen 345:329–345

    Article  CAS  Google Scholar 

  • Zani C, Feretti D, Buschini A, Poli P, Rossi C, Guzzella L, Di Caterino F, Monarca S (2005) Toxicity and genotoxicity of surface water before and after various potabilization steps. Mutat Res 587(1–2):26–37

    Article  CAS  Google Scholar 

  • Zheng D,0 Andrews RC, Andrews SA, Taylor-Edmonds L (2015) Effects of oagulation on the removal of natural organic matter, genotoxicity, and precursors to halogenated furanones. Water Res 70: 118–129

  • Zidane F, Cheggari K, Blais JF, Khlil N (2012) Effect of chlorination on trihalomethanes formation in feed water of Casablanca in Morocco. J Mater Environ Sci 3:99–108

    CAS  Google Scholar 

  • Zoeteman BC, Hrubec J, de Greef E, Kool HJ (1982) Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation. Environ Health Perspect 46:197–205

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviane Souza do Amaral.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

ESM 1

(DOCX 69 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro Medeiros, L., de Alencar, F.L.S., Navoni, J.A. et al. Toxicological aspects of trihalomethanes: a systematic review. Environ Sci Pollut Res 26, 5316–5332 (2019). https://doi.org/10.1007/s11356-018-3949-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3949-z

Keywords

Navigation