Skip to main content
Log in

Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

With the accelerated application of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles (NPs) in commercial products, concerns about the potential impacts on the environment have been growing. Environmental behaviors of NPs are expected to significantly influence their fate and ecological risk in the aquatic environment. In this study, the environmental behaviors of two metallic NPs (CuO and ZnO NPs), including aggregation, sedimentation, and dissolution, were systematically evaluated in five representative waters (pool water, lake water, rainwater, tap water, and wastewater) with varying properties. Remarkable aggregation, sedimentation, and dissolution were observed for both metallic NPs, among which ZnO NPs exhibited greater influence. CuO (ZnO) NPs aggregated to 400 (500) nm, 500 (900) nm, and 800 (1500) nm in lake water, wastewater, and tap water, respectively. The sedimentation rates of CuO and ZnO NPs in the five waters were ranked as tap water > wastewater > lake water > pool water > rainwater. The dissolution of CuO and ZnO NPs in waters follows a first-order reaction rate model and is affected by ionic type, ionic strength (IS), and NOM (natural organic matter) concentrations. Redundancy analysis (RDA) indicated that the aggregation and sedimentation of NPs have a strong correlation, insofar as the sedimentation rates increase with increasing aggregation rates. The aggregation and dissolution of NPs have a negative correlation, insofar as the dissolution rates reduce with increasing aggregation rates. The aggregation, sedimentation, and dissolution of NPs can be influenced by ionic types, IS, and TOC in waters, among which, TOC may the dominant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam N, Schmitt C, Galceran J, Companys E, Vakurov A, Wallace R, Knapen D, Blust R (2014) The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 8(7):709–717

    CAS  Google Scholar 

  • Adam N, Leroux F, Knapen D, Bals S, Blust R (2015) The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios. Water Res 68:249–261

    Article  CAS  Google Scholar 

  • Adeleye AS, Conway JR, Perez T, Rutten P, Keller AA (2014) Influence of extracellular polymeric substances on the long-term fate, dissolution, and speciation of copper-based nanoparticles. Environ Sci Technol 48(21):12561–12568

    Article  CAS  Google Scholar 

  • Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO 2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407(4):1461–1468

    Article  CAS  Google Scholar 

  • Arvidsson R, Molander S, Sandén BA, Hassellöv M (2011) Challenges in exposure modeling of nanoparticles in aquatic environments. Hum Ecol Risk Assess 17(1):245–262

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  Google Scholar 

  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27(10):6059–6068

    Article  CAS  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158(1):41–47

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200

    Article  CAS  Google Scholar 

  • Chen KL, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22(26):10994–11001

    Article  CAS  Google Scholar 

  • Chen TH, Lin CC, Meng PJ (2014) Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J Hazard Mater 277:134–140

    Article  CAS  Google Scholar 

  • Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution, and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49(5):2749–2756

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams R (1997) Particle deposition and aggregation, measurement, modeling and simulation. Colloids Surf A Physicochem Eng Asp 125(1):93–94

    Article  Google Scholar 

  • Filella M, Buffle J (1993) Factors controlling the stability of submicron colloids in natural waters. Colloids Surf A Physicochem Eng Asp 73:255–273

    Article  CAS  Google Scholar 

  • French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43(5):1354–1359

    Article  CAS  Google Scholar 

  • Gelabert A, Sivry Y, Ferrari R, Akrout A, Cordier L, Nowak S, Menguy N, Benedetti MF (2014) Uncoated and coated ZnO nanoparticle life cycle in synthetic seawater. Environ Toxicol Chem 33(2):341–349

    Article  CAS  Google Scholar 

  • Hamaker HC (1937) The London—van der Waals attraction between spherical particles. physica 4(10):1058–1072

    Article  CAS  Google Scholar 

  • Han Y, Kim D, Hwang G, Lee B, Eom I, Kim PJ, Tong M, Kim H (2014) Aggregation and dissolution of ZnO nanoparticles synthesized by different methods: influence of ionic strength and humic acid. Colloids Surf A Physicochem Eng Asp 451:7–15

    Article  CAS  Google Scholar 

  • Han Y, Hwang G, Park S, Gomez-Flores A, Jo E, Eom IC et al (2017) Stability of carboxyl-functionalized carbon black nanoparticles: the role of solution chemistry and humic acid. Environ Sci Nano 4(4):800–810

    Article  CAS  Google Scholar 

  • Holthoff H, Egelhaaf SU, Borkovec M, Schurtenberger P, Sticher H (1996) Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 12(23):5541–5549

    Article  CAS  Google Scholar 

  • Hou J, Miao L, Wang C, Wang P, Ao Y, Qian J, Dai S (2014) Inhibitory effects of ZnO nanoparticles on aerobic wastewater biofilms from oxygen concentration profiles determined by microelectrodes. J Hazard Mater 276:164–170

    Article  CAS  Google Scholar 

  • Hou J, Miao L, Wang C, Wang P, Ao Y, Lv B (2015) Effect of CuO nanoparticles on the production and composition of extracellular polymeric substances and physicochemical stability of activated sludge flocs. Bioresour Technol 176:65–70

    Article  CAS  Google Scholar 

  • Hsiung CE, Lien HL, Galliano AE, Yeh CS, Shih YH (2016) Effects of water chemistry on the destabilization and sedimentation of commercial TiO 2 nanoparticles: role of double-layer compression and charge neutralization. Chemosphere 151:145–151

    Article  CAS  Google Scholar 

  • Israelachvili JN, Wennerstroem H (1992) Entropic forces between amphiphilic surfaces in liquids. J Phys Chem 96(2):520–531

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11(1):77–89

    Article  CAS  Google Scholar 

  • Jiang C, Aiken GR, Hsu-Kim H (2015) Effects of natural organic matter properties on the dissolution kinetics of zinc oxide nanoparticles. Environ Sci Technol 49(19):11476–11484

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732

    Article  CAS  Google Scholar 

  • Keller AA, Lazareva A (2013) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Technol Lett 1(1):65–70

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967

    Article  CAS  Google Scholar 

  • Kim S, Lee KS, Zachariah MR, Lee D (2010) Three-dimensional off-lattice Monte Carlo simulations on a direct relation between experimental process parameters and fractal dimension of colloidal aggregates. J Colloid Interface Sci 344(2):353–361

    Article  CAS  Google Scholar 

  • Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (EPS) of freshwater biofilms stabilize and modify CeO2 and ag nanoparticles. PLoS One 9:e110709

    Article  CAS  Google Scholar 

  • Le Van N, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  CAS  Google Scholar 

  • Lee J, Mahendra S, Alvarez PJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590

    Article  CAS  Google Scholar 

  • Liang C, Jesus EDC, Duncan DS, Jackson RD, Tiedje JM, Balser TC (2012) Soil microbial communities under model biofuel cropping systems in southern Wisconsin, USA: impact of crop species and soil properties. Appl Soil Ecol 54:24–31

    Article  Google Scholar 

  • Lin D, Story SD, Walker SL, Huang Q, Cai P (2016) Influence of extracellular polymeric substances on the aggregation kinetics of TiO2 nanoparticles. Water Res 104:381–388

    Article  CAS  Google Scholar 

  • Liu J, Legros S, Ma G, Veinot JG, Von der Kammer F, Hofmann T (2012) Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles. Chemosphere 87(8):918–924

    Article  CAS  Google Scholar 

  • Liu J, Legros S, Von der Kammer F, Hofmann T (2013) Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles. Environ Sci Technol 47(9):4113–4120

    Article  CAS  Google Scholar 

  • Lombi E, Donner E, Tavakkoli E, Turney TW, Naidu R, Miller BW, Scheckel KG (2012) Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ Sci Technol 46(16):9089–9096

    Article  CAS  Google Scholar 

  • Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2013) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112

    Article  CAS  Google Scholar 

  • Majedi SM, Kelly BC, Lee HK (2014) Combined effects of water temperature and chemistry on the environmental fate and behavior of nanosized zinc oxide. Sci Total Environ 496:585–593

    Article  CAS  Google Scholar 

  • Miao L, Wang C, Hou J, Wang P, Ao Y, Dai S, Lv B (2015a) Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton. Environ Sci Pollut Res 22(10):7696–7704

    Article  CAS  Google Scholar 

  • Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Lv B, Yang Y, You G, Xu Y (2015b) Enhanced stability and dissolution of CuO nanoparticles by extracellular polymeric substances in aqueous environment. J Nanopart Res 17(10):404

    Article  CAS  Google Scholar 

  • Miao L, Chao W, Hou J, Wang P, Ao Y, Yi L et al (2016a) Aggregation and removal of copper oxide (cuo) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms. Bioresour Technol 216:537–544

    Article  CAS  Google Scholar 

  • Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Lv B, Yang Y, You G, Xu Y (2016b) Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca2+. Environ Sci Pollut Res 23(12):11611–11619

    Article  CAS  Google Scholar 

  • Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225:139–145

    Article  CAS  Google Scholar 

  • Mudunkotuwa IA, Rupasinghe T, Wu CM, Grassian VH (2011) Dissolution of ZnO nanoparticles at circumneutral pH: a study of size effects in the presence and absence of citric acid. Langmuir 28(1):396–403

    Article  CAS  Google Scholar 

  • Peng YH, Tso CP, Tsai YC, Zhuang CM, Shih YH (2015) The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. Sci Total Environ 530:183–190

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814

    Article  CAS  Google Scholar 

  • Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962

    Article  CAS  Google Scholar 

  • Praetorius A, Scheringer M, Hungerbu ¨h K (2012) Development of environmental fate models for engineered nanoparticles—a case study of TiO2 nanoparticles in the Rhine river. Environ Sci Technol 46(12):6705–6713

    Article  CAS  Google Scholar 

  • Quik JT, Vonk JA, Hansen SF, Baun A, Van De Meent D (2011) How to assess exposure of aquatic organisms to manufactured nanoparticles? Environ Int 37(6):1068–1077

    Article  CAS  Google Scholar 

  • Rathnayake S, Unrine JM, Judy J, Miller AF, Rao W, Bertsch PM (2014) Multitechnique investigation of the pH dependence of phosphate induced transformations of ZnO nanoparticles. Environ Sci Technol 48(9):4757–4764

    Article  CAS  Google Scholar 

  • Shih YH, Zhuang CM, Peng YH, Lin CH, Tseng YM (2012) The effect of inorganic ions on the aggregation kinetics of lab-made TiO2 nanoparticles in water. Sci Total Environ 435:446–452

    Article  CAS  Google Scholar 

  • Song Q, Jabeen S, Shamsi IH, Zhu Z, Liu X, Brookes PC (2016) Spatio-temporal variability of heavy metal concentrations in soil-rice system and its socioenvironmental analysis. Int J Agric Biol 18:403e411

    Google Scholar 

  • Sousa VS, Teixeira MR (2013) Aggregation kinetics and surface charge of CuO nanoparticles: the influence of pH, ionic strength and humic acids. Environ Chem 10(4):313–322

    Article  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45(14):6032–6040

    Article  CAS  Google Scholar 

  • Yang Y, Mathieu JM, Chattopadhyay S, Miller JT, Wu T, Shibata T, Guo W, Alvarez PJ (2012) Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano 6(7):6091–6098

    Article  CAS  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43(17):4249–4257

    Article  CAS  Google Scholar 

  • Zhang S, Jiang Y, Chen CS, Spurgin J, Schwehr KA, Quigg A, Chin WC, Santschi PH (2012) Aggregation, dissolution, and stability of quantum dots in marine environments: importance of extracellular polymeric substances. Environ Sci Technol 46(16):8764–8772

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, Dai Y, Xing B (2013) Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter. Water Res 47(12):4169–4178

    Article  CAS  Google Scholar 

  • Zhou D, Keller AA (2010) Role of morphology in the aggregation kinetics of ZnO nanoparticles. Water Res 44(9):2948–2956

    Article  CAS  Google Scholar 

  • Zhou XH, Huang BC, Zhou T, Liu YC, Shi HC (2015) Aggregation behavior of engineered nanoparticles and their impact on activated sludge in wastewater treatment. Chemosphere 119:568–576

    Article  CAS  Google Scholar 

Download references

Funding

We are grateful for the grants from the project supported by the National Natural Science Funds for Creative Research Groups of China (No. 51421006), the National Natural Science Funds for Excellent Young Scholar (No. 51722902), the Outstanding Youth Fund of Natural Science Foundation of Jiangsu, China (BK20160038), the Key Program of the National Natural Science Foundation of China (No. 91647206), the National Key Project of Research and Development Plan of China (2016YFC0401709), the Fundamental Research Funds for the Central Universities (No. 2017B01614), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Hou or Lingzhan Miao.

Additional information

Responsible editor: Thomas D. Bucheli

Electronic supplementary material

ESM 1

(DOCX 1461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wang, C., Hou, J. et al. Aggregation, sedimentation, and dissolution of CuO and ZnO nanoparticles in five waters. Environ Sci Pollut Res 25, 31240–31249 (2018). https://doi.org/10.1007/s11356-018-3123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3123-7

Keywords

Navigation