Skip to main content
Log in

Favorable compatibility of nitenpyram with the aphid predator, Coccinella septempunctata L. (Coleoptera: Coccinellidae)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The increasing demand for lessening the chemical input in agricultural ecosystems requires an efficient combination of pesticides and biological controls. Thus, fully understanding the compatibility of pesticides and beneficial arthropod predators is helpful and essential. In this study, we evaluated the influence of nitenpyram on both larvae and adults of Coccinella septempunctata using exposure doses of 10, 25, 50, 100, and 150% of the maximum recommended field rate (MRFR) (3, 7.5, 15, 30, and 45 g a.i. ha−1, respectively) and a blank control based on a preliminary acute 72-h toxicity experiment. In the long-term test, the LR50 (application rate causing the mortality of 50% of the individuals) of nitenpyram for C. septempunctata decreased from 73.43 to 63.0 g a.i. ha−1, while the HQ (hazard quotient) values remained below the threshold value of 2. Nitenpyram did not significantly influence the survival rate, fecundity, pupation, or adult emergence at 150% of the label rate (lowest LR50 = 63.0 g a.i. ha−1), and its demonstrated NOER (No Observed Effect application Rates) values are all above 45 g a.i. ha−1. Likewise, the total developmental time and egg hatchability were not significantly affected at 100% of the label rate (NOER = 30 g a.i. ha−1). The assessment of the total effect (E) suggested that nitenpyram could be classified as harmless to C. septempunctata below/at a dose of 30 g a.i. ha−1. The lowest LR50 and NOER values were both above the maximum recommended field application rate for nitenpyram (30 g a.i. ha−1) for controlling aphids in China. All results indicated that the on-label use of nitenpyram is compatible with the natural enemy C. septempunctata in agricultural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bianchi FJJA, Werf WVD (2003) The effect of the area and configuration of hibernation sites on the control of aphids by Coccinella septempunctata (Coleoptera: Coccinellidae) in agricultural landscapes: a simulation study. Environ Entomol 32:1290–1304

    Article  Google Scholar 

  • Biondi A, Mommaerts V, Smagghe G, Vinuela E, Zappala L, Desneux N (2012) The non-target impact of spinosyns on beneficial arthropods. Pest Manag Sci 68:1523–1536

    Article  CAS  Google Scholar 

  • Biondi A, Zappalà L, Stark JD, Desneux N (2013) Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 8:e76548

    Article  CAS  Google Scholar 

  • Bozsik A (2006) Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. Pest Manag Sci 62(7):651–654

    Article  CAS  Google Scholar 

  • Burgess ER, King BH (2015) Compatibility of the parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae) and insecticides against Musca domestica (Diptera: Muscidae) as evaluated by a new index. J Econ Entomol 108:986–992

    Article  Google Scholar 

  • Cabral S, Soares AO, Garcia P (2011) Voracity of Coccinella undecimpunctata : effects of insecticides when foraging in a prey/plant system. J Pest Sci 84:373–379

    Article  Google Scholar 

  • Candolfi M, Barrett K, Campbell P, Forster R, Grandy N, Huet M, Lewis G, Oomen P, Schmuck R, Vogt H (2001) Guidance Document on Regulatory Testing and Risk Assessment Procedures for Plant Protection Products with Non-target Arthropods, From the ESCORT 2 workshop SETAC, Pensacola

  • Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vanier F, Locker D, Decoville M (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48:4096–4102

    Article  CAS  Google Scholar 

  • China Pesticide Information Network (2017) Institute Control of Agrochemicals Ministry of Agriculture, P. R. China. http://www.chinapesticide.org.cn/hysj/index.jhtml

  • Cloyd RA, Bethke JA (2011) Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments. Pest Manag Sci 67:3–9

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The low lethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Dolling WR (1991) The Hemiptera. Oxford University Press, London p. 274

  • Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105

    Article  CAS  Google Scholar 

  • Fernandes ME, Alves FM, Pereira RC, Aquino LA, Fernandes FL, Zanuncio JC (2016) Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials. Chemosphere 156:45–55

    Article  CAS  Google Scholar 

  • Fogel MN, Schneider MI, Desneux N, González B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  CAS  Google Scholar 

  • Frank JH (2000) Book review: Insect predator-prey dynamics. Ladybird beetles & biological control. Q Rev Biol 82(3):244

    Google Scholar 

  • Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87:711–719

    Article  Google Scholar 

  • Graftoncardwell EE, Gu P (2003) Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), in citrus: a continuing challenge as new insecticides gain registration. J Econ Entomol 96:1388–1398

    Article  CAS  Google Scholar 

  • Hassan SA (1994) Activities of the IOBC/WRPS working group on pesticide and beneficial organisms. Springer US

  • He Y, Zhao J, Zheng Y, Desneux N, Wu K (2012) Lethal effect of imidacloprid on the coccinellid predator Serangium japonicum and sublethal effects on predator voracity and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21:1291–1300

    Article  CAS  Google Scholar 

  • Honek A, Hodek I (1996) Distribution in habitats, in Ecology of Coccinellidae, by Hodek I and Honek A. Kluwer, Dordrecht, pp. 95–141

  • IRAC, Insecticide Resistance Action Committee (2017) IRAC mode of action classification scheme. <http://www.irac-online.org/documents/moaclassification/?ext=pdf> (accessed 25.02.14)

  • Jervis MA, Copland MJW (1996) The life cycle. In Insect natural enemies: practical approaches to their study and evaluation, ed. MA Jervis, N Kidd, London: Chapman & Hall, pp. 63–102

  • Jeschke P, Nauen R, Schindler M, Elbert A (2011) Overview of the status and global strategy for neonicotinoids. J Agric Food Chem 59:2897–2908

    Article  CAS  Google Scholar 

  • Khan MA, Khan H, Ruberson JR (2015) Lethal and behavioral effects of selected novel pesticides on adults of Trichogramma pretiosum (Trichogrammatidae: Hymenoptera). Pest Manag Sci 71:1640–1648

    Article  CAS  Google Scholar 

  • Ko K, Liu Y, Hou M, Babendreier D, Zhang F, Song K (2015) Toxicity of insecticides targeting rice planthoppers to adult and immature stages of Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 108(1):69–76

    Article  Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270

    Article  CAS  Google Scholar 

  • Li W, Zhang P, Zhang J, Lin W, Lu Y, Gao Y (2015) Acute and sublethal effects of neonicotinoids and pymetrozine on an important egg parasitoid, Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biocontrol Sci Tech 25:121–131

    Article  CAS  Google Scholar 

  • Lu CH, Liu XG, Dong FS, Xu J, Wang X, Zheng YQ (2010) Residue and degradation of nitenpyram in cotton and soil. Environ Chem 29:614–618

    CAS  Google Scholar 

  • Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  Google Scholar 

  • MAPRC, Ministry of Agriculture of People’s Republic of China (2017) Chemical pesticide—guideline for ladybird beetle acute contact toxicity test. China Standards Press, Beijing

    Google Scholar 

  • Min KM, Min JK, Jung IK, Koo YD, Ann HY, Lee KJ, Kim SH, Yoon YC, Cho BJ, Park KS, Jang HC, Park YJ (2012) Bisphenol a impairs mitochondrial function in the liver at doses below the no observed adverse effect level. J Korean Med Sci 27:644–652

    Article  CAS  Google Scholar 

  • Overmeer WPJ, Zon AQV (1982) A standardized method for testing the side effects of pesticides on the predacious mite, Amblyseius potentillae [Acarina: Phytoseiidae]. Entomophaga 27:357–363

    Article  CAS  Google Scholar 

  • Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81

    Article  CAS  Google Scholar 

  • Rajak P, Dutta M, Roy S (2014) Effect of acute exposure of acephate on hemocyte abundance in a non-target victim Drosophila melanogaster. Toxicol Environ Chem 96:768–776

    Article  CAS  Google Scholar 

  • Rajapakse N, Silva E, Kortenkamp A (2002) Combining xenoestrogens at levels below individual no-observed-effect concentrations dramatically enhances steroid hormone action. Environ Health Perspect 110:917–921

    Article  CAS  Google Scholar 

  • Saeed R, Razaq M, Hardy IC (2015) The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies. J Pest Sci 88:517–531

    Article  Google Scholar 

  • Sancho E, Banegas S, Villarroel MJ, Ferrando D (2017) Impaired reproduction and individual growth of the water flea Daphnia magna as consequence of exposure to the non-ester pyrethroid etofenprox. Environ Sci Pollut Res:1–9

  • Santos MF, Santos RL, Tomé HVV, Barbosa WF, Martins GF, Guedes RNC, Oliveira EE (2016) Imidacloprid-mediated effects on survival and fertility of the Neotropical brown stink bug Euschistus heros. J Pest Sci 89:231–240

    Article  Google Scholar 

  • Shima R, Ali RB (2013) Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata, (Goeze) (Coleoptera: Coccinellidae). Crop Prot 54:168–175

    Article  CAS  Google Scholar 

  • Stark JD, Vargas R, Banks JE (2007) Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J Econ Entomol 100:1027–1032

    Article  Google Scholar 

  • Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364

    Article  CAS  Google Scholar 

  • Uneme H (2011) Chemistry of clothianidin and related compounds. J Agric Food Chem 59:2932–2937

    Article  CAS  Google Scholar 

  • Volkl W, Mackauer M, Pell JK, Brodeur J (2007) Predators, parasitoids and pathogens. In: Van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Cambridge, pp 187–233

    Chapter  Google Scholar 

  • Wang XM, Chen P, Zhang XZ, Ruan CC (2014) Evaluation of the effect of nitenpyram on Harmonia axyridis (Pallas) using life table technique. Acta Ecol Sin 34:3629–3534

    CAS  Google Scholar 

  • Wang SY, Qi YF, Desneux N, Shi XY, Biondi A, Gao XW (2016) Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. J Pest Sci 90:389–396

    Article  Google Scholar 

  • Weltje L, Sumpter JP (2017) What makes a concentration environmentally relevant? Critique and a proposal. Environ Sci Technol 51:11520–11521

    Article  CAS  Google Scholar 

  • Yao FL, Zheng Y, Zhao JW, Desneux N, He YX, Weng QY (2015) Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. Chemosphere 128:49–55

    Article  CAS  Google Scholar 

  • Yu C, Fu M, Lin R, Zhang Y, Liu Y, Jiang H, Brock TCM (2014a) Toxic effects of hexaflumuron on the development of Coccinella septempunctata. Environ Sci Pollut Res 21:1418–1424

    Article  CAS  Google Scholar 

  • Yu CH, Lin RH, Fu MR, Zhou YM, Zong FL, Jiang H, Lv N, Piao XY, Zhang J, Liu YQ, Brock TCM (2014b) Impact of imidacloprid on life-cycle development of Coccinella septempunctata in laboratory microcosms. Ecotoxicol Environ Saf 110:168–173

    Article  CAS  Google Scholar 

  • Zar JH (1996) Biostatistical Analysis, third ed. Prentice-Hall, London, (662pp)

  • Zhang DW, Dong M, Du XG (2011) Effects of organic management on predator densities of Myzus persicae (Sulzer) during transition to organic agriculture in peach fields in China. J Sustain Agric 35:826–839

    Article  Google Scholar 

  • Zhang P, Zhang X, Zhao Y, Ren Y, Mu W, Liu F (2015) Efficacy of granular applications of clothianidin and nitenpyram against Aphis gossypii, (glover) and Apolygus lucorum, (Meyer-dür) in cotton fields in China. Crop Prot 78:27–34

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang X, Wang Y, Zhao Y, Lin J, Mu W, Liu F (2016) Nitenpyram, dinotefuran, and thiamethoxam used as seed treatments act as efficient controls against Aphis gossypii via high residues in cotton leaves. J Agric Food Chem 64:9276–9285

    Article  CAS  Google Scholar 

  • Zhang Z, Wang Y, Zhao Y, Li B, Lin J, Zhang X, Mu W, Liu F (2017) Nitenpyram seed treatment effectively controls against the mirid bug Apolygus lucorum in cotton seedlings. Sci Rep 7:8573

    Article  CAS  Google Scholar 

  • Zhao X, Wu C, Wang Y, Tao C, Chen L, Yu R (2012) Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogramma japonicum, an egg parasitoid of rice lepidopterans. J Econ Entomol 105:92–101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Key Research Development Program of China (2017YFD0201900) and the National Natural Science Foundation of China (no. 31471803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Mu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Information on the preliminary 72-h acute toxicity experiment evaluating the effects of nitenpyram on C. septempunctata is provided in Table S1.

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Ma, D., Zhang, Z. et al. Favorable compatibility of nitenpyram with the aphid predator, Coccinella septempunctata L. (Coleoptera: Coccinellidae). Environ Sci Pollut Res 25, 27393–27401 (2018). https://doi.org/10.1007/s11356-018-2785-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2785-5

Keywords

Navigation