Skip to main content
Log in

Comparison of passive sampling and biota for monitoring of tonalide in aquatic environment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Synthetic musk compounds are extensively used in personal care and cosmetic products all over the world. Afterwards, they are discharged into the environment mainly because they are not completely removed in wastewater treatment plants. The aim of this study was to investigate if a passive sampler is applicable for the monitoring of tonalide, a polycyclic musk compound, in the aquatic environment and to compare the levels of tonalide in pesticide-polar organic chemical integrative sampler (POCIS) and biota. For this purpose, four sampling localities on the three biggest rivers in the Czech Republic were selected. Tonalide was determined in POCIS at all sampling sites in the concentration ranging from 9 ng/POCIS (Labe River, Hradec Králové) to 25 ng/POCIS (Morava River, Blatec). The locality with the most frequent occurrence of tonalide in biota samples was the Morava River which well corresponded with the highest tonalide concentration in POCIS among sampling sites. The highest number of positive tonalide detections among all studied biota samples was found in fish plasma. To the best of our knowledge, this is the first evidence that tonalide bioaccumulates in fish blood. Tonalide levels were below the limit of quantification in benthos samples at all sampling sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan IJ, Harman C, Ranneklev SB, Thomas KV, Grung M (2013) Passive sampling for target and nontarget analyses of moderately polar and nonpolar substances in water. Environ Toxicol Chem 32:1718–1726. doi:10.1002/etc.2260

    Article  CAS  Google Scholar 

  • Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648. doi:10.1897/03-603

    Article  CAS  Google Scholar 

  • Alvarez DA, Stackelberg PE, Petty JD, Huckins JN, Furlong ET, Zaugg SD, Meyer MT (2005) Comparison of a novel passive sampler to standard water-column sampling for organic contaminants associated with wastewater effluents entering a New Jersey stream. Chemosphere 61:610–622. doi:10.1016/j.chemosphere.2005.03.023

    Article  CAS  Google Scholar 

  • Alvarez DA, Cranor WL, Perkins SD, Schroeder VL, Werner SL, Furlong ET, Kain D, Brent R (2008) Reconnaissance of persistent and emerging contaminants in the Shenandoah and James River basins, Virginia, during spring of 2007. U.S. Geological Survey Open-File Report no 1231. http://pubs.usgs.gov/of/2008/1231/pdf/OF2008-1231.pdf. Accessed 5 July 2016

  • Alvarez DA, Cranor WL, Perkins SD, Schroeder VL, Iwanowicz LR, Clark RC, Guy CP, Pinkney AF, Blazer VS, Mullican JE (2009) Reproductive health of bass in the Potomac, USA, drainage: part 2. Seasonal occurrence of persistent and emerging organic contaminants. Environ Toxicol Chem 28:1084–1095. doi:10.1897/08-417.1

    Article  CAS  Google Scholar 

  • Balk F, Ford RA (1999) Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU I. Fate and exposure assessment. Toxicol Lett 111:57–79. doi:10.1016/S0378-4274(99)00169-1

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. doi:10.1016/j.chemosphere.2010.11.018

    Article  CAS  Google Scholar 

  • Casatta N, Mascolo G, Roscioli C, Viganò L (2015) Tracing endocrine disrupting chemicals in a coastal lagoon (Sacca di Goro, Italy): sediment contamination and bioaccumulation in Manila clams. Sci Total Environ 511:214–222. doi:10.1016/j.scitotenv.2014.12.051

    Article  CAS  Google Scholar 

  • Chase DA, Karnjanapiboonwong A, Fang Y, Cobb GP, Morse AN, Anderson TA (2012) Occurrence of synthetic musk fragrances in effluent and non-effluent impacted environments. Sci Total Environ 416:253–260. doi:10.1016/j.scitotenv.2011.11.067

    Article  CAS  Google Scholar 

  • Dsikowitzky L, Schwarzbauer J, Littke R (2002) Distribution of polycyclic musks in water and particulate matter of the Lippe River (Germany). Org Geochem 33:1747–1758. doi:10.1016/S0146-6380(02)00115-8

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (EPA) (2003) High Production Volume (HPV) chemical list database. http://www.epa.gov/chemrtk/index.htm. Accessed 30 Nov 2015

  • EU (2010) Guidance on chemical monitoring of sediment and biota under the Water Framework Directive (Guidance document No. 25). https://circabc.europa.eu/sd/a/7f47ccd9-ce47-4f4a-b4f0-cc61db518b1c/Guidance%20No%2025%20-%20Chemical%20Monitoring%20of%20Sediment%20and%20Biota.pdf. Accessed 22 June 2015

  • European Commission (2008) Commission Directive 2008/42/EC of 3 April 2008 amending Council Directive 76/768/EEC, concerning cosmetic products, for the purpose of adapting Annexes II and III thereto to technical progress, Official journal of the european union. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:093:0013:0023:en:PDF. Accessed 25 June 2016

  • European Standard EN 14011 (2003) Water quality-sampling of fish with electricity. The European Standard EN 14011:2003 has the status of a Czech Standard. https://nahledy.normy.biz/n.php?i=68220. Accessed 3 August 2017

  • European Standard EN 1528-2 (1996) Fatty food—determination of pesticides and polychlorinated biphenyls (PCBs). Part 2: Extraction of fat, pesticides and PCBs, and determination of fat content. https://shop.austrian-standards.at/Preview.action;jsessionid=8F73CF449F7754DB9942DD6368277853?preview=&dokkey=53113&selectedLocale=en. Accessed 20 June 2016

  • Fedorova G, Golovko O, Randák T, Grabic R (2013) Passive sampling of perfluorinated acids and sulfonates using polar organic chemical integrative samplers. Environ Sci Pollut Res 20:1344–1351. doi:10.1007/s11356-012-1003-0

    Article  CAS  Google Scholar 

  • Grabicova K, Grabic R, Bláha M, Kumar V, Červený D, Fedorova G, Randák T (2015) Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Res 72:145–153. doi:10.1016/j.watres.2014.09.018

    Article  CAS  Google Scholar 

  • Hájková K, Pulkrabová J, Hajšlová J, Randák T, Žlábek V (2007) Chub (Leuciscus cephalus) as a bioindicator of contamination of the Vltava River by synthetic musk fragrances. Arch Environ ContamToxicol 53:390–396. doi:10.1007/s00244-006-0190-4

    Article  Google Scholar 

  • Hajšlová J, Šetková L (2004) Synthetic musks in bioindicators: monitoring data of fish and human milk samples from the Czech Republic. Handb Environ Chem 3:151–188. doi:10.1007/b14120

    Google Scholar 

  • Harman C, Tollefsen KE, Bøyum O, Thomas K, Grung M (2008) Uptake rates of alkylphenols, PAHs and carbazoles in semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS). Chemosphere 72:1510–1516. doi:10.1016/j.chemosphere.2008.04.091

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta Hydrochim Hydrobiol 30:227–243. doi:10.1002/aheh.200390005

    Article  Google Scholar 

  • Helm PA, Howell ET, Li H, Metcalfe TL, Chomicky KM, Metcalfe CD (2012) Influence of nearshore dynamics on the distribution of organic wastewater-associated chemicals in Lake Ontario determined using passive samplers. J Great Lakes Res 38:105–115. doi:10.1016/j.jglr.2012.01.005

    Article  CAS  Google Scholar 

  • Hoque ME, Cloutier F, Arcieri C, McInnes M, Sultana T, Murray C, Vanrolleghem PA, Metcalfe CD (2014) Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon. Sci Total Environ 487:801–812. doi:10.1016/j.scitotenv.2013.12.063

    Article  CAS  Google Scholar 

  • Horii Y, Reiner JL, Loganathan BG, Kumar KS, Sajwan K, Kannan K (2007) Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA. Chemosphere 68:2011–2020. doi:10.1016/j.chemosphere.2007.04.054

    Article  CAS  Google Scholar 

  • Kokeš J, Zahrádková S, Němejcová D, Hodovský J, Jarkovský J, Soldán T (2006) The PERLA system in the Czech Republic: a multivare approach for assessing the ecological status of running waters. Hydrobiologia 566:343–354. doi:10.1007/s10750-006-0085-4

    Article  Google Scholar 

  • Lange C, Kuch B, Metzger JW (2015) Occurrence and fate of synthetic musk fragrances in a small German river. J Hazard Mater 282:34–40. doi:10.1016/j.jhazmat.2014.06.027

    Article  CAS  Google Scholar 

  • Li H, Vermeirssen ELM, Helm PA, Metcalfe CD (2010) Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers. Environ Toxicol Chem 29:2461–2469. doi:10.1002/etc.305

    Article  CAS  Google Scholar 

  • Li ZH, Zlabek V, Turek J, Velisek J, Pulkrabova J, Kolarova J, Sudova E, Berankova P, Hradkova P, Hajslova J, Randak T (2011) Evaluating environmental impact of STPs situated on streams in the Czech Republic: an integrated approach to biomonitoring the aquatic environment. Water Res 45:1403–1413. doi:10.1016/j.watres.2010.10.032

    Article  CAS  Google Scholar 

  • Mogensen BB, Pritzl G, Rastogi S, Glense O, Hedlund B, Hirvi JP, Lundgren A, Sigurdsson A (2004) Musk compounds in the Nordic environment. TemaNord Report no 503:1–70

  • Morin N, Miège C, Coquery M, Randon J (2012) Chemical calibration, performance, validation and applications of the polar organic chemical integrative sampler (POCIS) in aquatic environments. TrAC Trends Anal Chem 36:144–175. doi:10.1016/j.trac.2012.01.007

    Article  CAS  Google Scholar 

  • Nakata H, Hinosaka M, Yanagimoto H (2015) Macrocyclic-, polycyclic-, and nitro musks in cosmetics, household commodities and indoor dusts collected from Japan: implications for their human exposure. Ecotoxicol Environ Saf 111:248–255. doi:10.1016/j.ecoenv.2014.09.032

    Article  CAS  Google Scholar 

  • O’Toole S, Metcalfe CH (2006) Synthetic musks in fish from urbanized areas of the lower great lakes, Canada. J Great Lakes Res 32:361–369. doi:10.3394/0380-1330(2006)32[361:SMIFFU]2.0.CO;2

    Article  Google Scholar 

  • Quednow K, Püttmann W (2008) Organophosphates and synthetic musk fragrances in freshwater streams in Hessen/Germany. Clean 36:70–77. doi:10.1002/clen.200700023

    CAS  Google Scholar 

  • Reiner JL, Wong CM, Arcaro KF, Kannan K (2007) Synthetic musk fragrances in human milk from the United States. Environ Sci Technol 41:3815–3820. doi:10.1021/es063088a

    Article  CAS  Google Scholar 

  • Ren Y, Wei K, Liu H, Sui G, Wang J, Sun Y, Zheng X (2013) Occurrence and removal of selected polycyclic musks in two sewage treatment plants in Xi’an, China. Front Environ Sci Eng 7:166–172. doi:10.1007/s11783-012-0471-2

    Article  Google Scholar 

  • Rimkus GG (1999) Polycyclic musk fragrances in the aquatic environment. Toxicol Lett 111:37–56. doi:10.1016/S0378-4274(99)00191-5

    Article  CAS  Google Scholar 

  • Rosen MR, Alvarez DA, Goodbred SL, Leiker TJ, Patiño R (2010) Sources and distribution of organic compounds using passive samplers in Lake Mead national recreation area, Nevada and Arizona, and their implications for potential effects on aquatic biota. J Environ Qual 39:1161–1172. doi:10.2134/jeq2009.0095

    Article  CAS  Google Scholar 

  • Šetková L, Hajšlová J, Bergqvist PA, Kocourek V, Kazda R, Suchan P (2005) Fast isolation of hydrophobic organic environmental contaminants from exposed semipermeable membrane devices (SPMDs) prior to GC analysis. J Chromatogr A 1092(2):170–181. doi:10.1016/j.chroma.2005.07.059

    Article  Google Scholar 

  • Shek WM, Murphy MB, Lam JCW, Lam PKS (2008) Polycyclic musks in green-lipped mussels (Perna viridis) from Hong Kong. Mar Pollut Bull 57:373–380. doi:10.1016/j.marpolbul.2008.02.037

    Article  CAS  Google Scholar 

  • Sumner NR, Guitart C, Fuentes G, Readman JW (2010) Inputs and distributions of synthetic musk fragrances in an estuarine and coastal environment; a case study. Environ Pollut 158:215–222. doi:10.1016/j.envpol.2009.07.018

    Article  CAS  Google Scholar 

  • Vallecillos L, Borrull F, Pocurull E (2015) Recent approaches for the determination of synthetic musk fragrances in environmental samples. Trends Anal Chem 72:80–92. doi:10.1016/j.trac.2015.03.022

    Article  CAS  Google Scholar 

  • Vandermeersch G, Lourenço HM, Alvarez-Muñoz D, Cunha S, Diogène J, Cano-Sancho G, Sloth JJ, Kwadijk C, Barcelo D, Allegaert W, Bekaert K, Fernandes JO, Marques A, Robbens J (2016) Environmental contaminants of emerging concern in seafood—European database on contaminant levels. Environ Res 143:29–45. doi:10.1016/j.envres.2015.06.011

    Article  Google Scholar 

  • Vrana B, Mills GA, Allan IJ, Dominiak E, Svensson K, Knutsson J, Morrison G, Greenwood R (2005) Passive sampling techniques for monitoring pollutants in water. Trends Anal Chem 24:845–868. doi:10.1016/j.trac.2005.06.006

    Article  CAS  Google Scholar 

  • Wan Y, Wei Q, Hu J, Jin X, Zhang Z, Zhen H, Liu J (2007) Levels, tissue distribution, and age-related accumulation of synthetic musk fragrance in Chinese sturgeon (Acipenser sinensis): comparison to organochlorines. Environ Sci Technol 41:424–430. doi:10.1021/es061771r

    Article  CAS  Google Scholar 

  • Zeng X, Sheng G, Xiong Y, Fu J (2005) Determination of polycyclic musks in sewage sludge from Guangong, China using GC–EI-MS. Chemosphere 60:817–823. doi:10.1016/j.chemosphere.2005.04.026

    Article  CAS  Google Scholar 

  • Zhang X, Xu Q, Man S, Zeng X, Yu Y, Pang Y, Sheng G, Fu J (2013) Tissue concentrations, bioaccumulation, and biomagnification of synthetic musks in freshwater fish from Taihu Lake, China. Environ Sci Pollut Res 20:311–322. doi:10.1007/s11356-012-1095-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the projects CENAKVA CZ.1.05/2.1.00/01.0024, CENAKVA II (the results of the project LO1205 were obtained with a financial support from the MEYS of the CR under the NPU I program) and project of Grant Agency of the University of South Bohemia (No. 012/2016/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitka Tumova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tumova, J., Grabicova, K., Golovko, O. et al. Comparison of passive sampling and biota for monitoring of tonalide in aquatic environment. Environ Sci Pollut Res 24, 22251–22257 (2017). https://doi.org/10.1007/s11356-017-9850-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9850-3

Keywords

Navigation