Skip to main content

Advertisement

Log in

Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM–IECM model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface-groundwater flow model. J Hydrol 142:47–69. doi:10.1016/0022-1694(93)90004-S

    Article  Google Scholar 

  • Beasley DB, Huggins LF, Monke EJ (1980) ANSWERS—a model for watershed planning. T Asae 23:938–944

    Article  Google Scholar 

  • Bi X, Wang XY (2012) Analysis of non-point source pollution load in Dongting Lake watershed based on export coefficient model. Yangtze River 43:74–77

    Google Scholar 

  • Broches CF, Spranger MS, H. WB (1984) Report to congress: nonpoint source pollution in the US

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568. doi:10.2307/2641247

    Article  Google Scholar 

  • Chahor Y, Casali J, Gimenez R, Bingner RL, Campo MA, Goni M (2014) Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain). Agr Water Manage 134:24–37. doi:10.1016/j.agwat.2013.11.014

    Article  Google Scholar 

  • Chen DJ, Lu J, Shen YN, Dahlgren RA, Jin SQ (2009) Estimation of critical nutrient amounts based on input-output analysis in an agriculture watershed of eastern China. Agric Ecosyst Environ 134:159–167. doi:10.1016/j.agee.2009.06.011

    Article  CAS  Google Scholar 

  • Chen HY, Zhu T, Krott M, Calvo JF, Ganesh SP, Makoto I (2013) Measurement and evaluation of livelihood assets in sustainable forest commons governance. Land Use Policy 30:908–914. doi:10.1016/j.landusepol.2012.06.009

    Article  Google Scholar 

  • Daloglu I, Nassauer JI, Riolo R, Scavia D (2014a) An integrated social and ecological modeling framework-impacts of agricultural conservation practices on water quality. Ecol Soc 19:Artn 12. doi:10.5751/Es-06597-190312

    Article  Google Scholar 

  • Daloglu I, Nassauer JI, Riolo RL, Scavia D (2014b) Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agric Syst 129:93–102. doi:10.1016/j.agsy.2014.05.007

    Article  Google Scholar 

  • Deng ZM, Zhang X, Li D, Pan GY (2015) Simulation of land use/land cover change and its effects on the hydrological characteristics of the upper reaches of the Hanjiang Basin. Environ Earth Sci 73:1119–1132. doi:10.1007/s12665-014-3465-5

    Article  Google Scholar 

  • Ding CR (2003) Land policy reform in China: assessment and prospects. Land Use Policy 20:109–120. doi:10.1016/S0264-8377(02)00073-X

    Article  CAS  Google Scholar 

  • Ding XW, Shen ZY, Hong Q, Yang ZF, Wu X, Liu RM (2010) Development and test of the export coefficient model in the upper reach of the Yangtze River. J Hydrol 383:233–244. doi:10.1016/j.jhydrol.2009.12.039

    Article  CAS  Google Scholar 

  • Dong XY (1996) Two-tier land tenure system and sustained economic growth in post-1978 rural China. World Dev 24:915–928. doi:10.1016/0305-750x(96)00010-1

    Article  Google Scholar 

  • Edwards AC, Withers PJA (2008) Transport and delivery of suspended solids, nitrogen and phosphorus from various sources to freshwaters in the UK. J Hydrol 350:144–153. doi:10.1016/j.jhydrol.2007.10.053

    Article  CAS  Google Scholar 

  • Fang YP, Fan J, Shen MY, Song MQ (2014) Sensitivity of livelihood strategy to livelihood capital in mountain areas: empirical analysis based on different settlements in the upper reaches of the Minjiang River, China. Ecol Indic 38:225–235. doi:10.1016/j.ecolind.2013.11.007

    Article  Google Scholar 

  • Filatova T, Verburg PH, Parker DC, Stannard CA (2013) Spatial agent-based models for socio-ecological systems: challenges and prospects. Environ Model Softw 45:1–7. doi:10.1016/j.envsoft.2013.03.017

    Article  Google Scholar 

  • Galipeau BA, Ingman M, Tilt B (2013) Dam-induced displacement and agricultural livelihoods in China’s Mekong Basin. Hum Ecol 41:437–446. doi:10.1007/s10745-013-9575-y

    Article  Google Scholar 

  • Gaube V et al (2009) Combining agent-based and stock-flow modelling approaches in a participative analysis of the integrated land system in Reichraming, Austria. Landsc Ecol 24:1149–1165. doi:10.1007/s10980-009-9356-6

    Article  Google Scholar 

  • Griffin R (1991) Introducing NPS water pollution. EPA J 17:6

    Google Scholar 

  • Groom B, Palmer C (2012) REDD+ and rural livelihoods. Biol Conserv 154:42–52. doi:10.1016/j.biocon.2012.03.002

    Article  Google Scholar 

  • Happe K, Hutchings NJ, Dalgaard T, Kellerman K (2011) Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation. Agric Syst 104:281–291. doi:10.1016/j.agsy.2010.09.008

    Article  Google Scholar 

  • Herrmann S, Fox JM (2014) Assessment of rural livelihoods in south-west China based on environmental, economic, and social indicators. Ecol Indic 36:746–748. doi:10.1016/j.ecolind.2013.06.006

    Article  Google Scholar 

  • Hogarth NJ, Belcher B, Campbell B, Stacey N (2013) The role of Forest-related income in household economies and rural livelihoods in the border-region of southern China. World Dev 43:111–123. doi:10.1016/j.worlddev.2012.10.010

    Article  Google Scholar 

  • Hu W (1997) Household land tenure reform in China: its impact on farming land use and agro-environment. Land Use Policy 14:175–186. doi:10.1016/S0264-8377(97)00010-0

    Article  Google Scholar 

  • Huang D, Wan Q, Li L, Wang T, Lu S (2013) Changes of water quality and eutrophic state in recent 20 years of Dongting Lake. Res Environ Sci 26:27–33

    CAS  Google Scholar 

  • Huber FK, Yang YP, Weckerle CS, Seeland K (2014) Diversification of livelihoods in a society in transition: a case study of Tibetan communities in southwest China. Soc Natur Resour 27:706–723. doi:10.1080/08941920.2014.901465

    Article  Google Scholar 

  • Jiang Y (2009) China’s water scarcity. J Environ Manag 90:3185–3196. doi:10.1016/j.jenvman.2009.04.016

    Article  Google Scholar 

  • Johnes PJ (1996) Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters: the export coefficient modelling approach. J Hydrol 183:323–349. doi:10.1016/0022-1694(95)02951-6

    Article  CAS  Google Scholar 

  • Jones PG, Thornton PK (2009) Croppers to livestock keepers: livelihood transitions to 2050 in Africa due to climate change. Environ Sci Pol 12:427–437. doi:10.1016/j.envsci.2008.08.006

    Article  Google Scholar 

  • Kobrich C, Rehman T, Khan M (2003) Typification of farming systems for constructing representative farm models: two illustrations of the application of multi-variate analyses in Chile and Pakistan. Agric Syst 76:141–157. doi:10.1016/S0308-521x(02)00013-6

    Article  Google Scholar 

  • Le QB, Park SJ, Vlek PLG (2010) Land Use Dynamic Simulator (LUDAS): a multi-agent system model for simulating spatio-temporal dynamics of coupled human-landscape system 2. Scenario-based application for impact assessment of land-use policies. Ecological Informatics 5:203–221. doi:10.1016/j.ecoinf.2010.02.001

    Article  Google Scholar 

  • Li G (2009) Studies on influence factors of nitrogen and phosphorus loss of agricultural non-point source pollution in Hunan Province. Hunan Agricultural University

  • Li X, Zhu J, Gu X, Zhu J (2010) Current situation and control of agricultural non-point source pollution China population. Resources and Environment 20:81–84

    Google Scholar 

  • Li GD, Fang CL, Qiu DC, Wang LP (2014) Impact of farmer households' livelihood assets on their options of economic compensation patterns for cultivated land protection. J Geogr Sci 24:331–348. doi:10.1007/s11442-014-1091-5

    Article  Google Scholar 

  • Liu JG, Diamond J (2005) China’s environment in a globalizing world. Nature 435:1179–1186. doi:10.1038/4351179a

    Article  CAS  Google Scholar 

  • Liu Y, Huang JK (2010) A multi-objective decision model of farmers’ crop. Production Economic Research Journal 1:148–160

    Google Scholar 

  • Liu ZX, Liu LM (2016) Characteristics and driving factors of rural livelihood transition in the east coastal region of China: a case study of suburban Shanghai. J Rural Stud 43:145–158. doi:10.1016/j.jrurstud.2015.12.008

    Article  Google Scholar 

  • Liu M, Li CL, Hu YM, Sun FY, Xu YY, Chen T (2014) Combining CLUE-S and SWAT models to forecast land use change and non-point source pollution impact at a watershed scale in Liaoning Province, China. Chin Geogr Sci 24:540–550. doi:10.1007/s11769-014-0661-x

    Article  Google Scholar 

  • Liu RM, Dong GX, Xu F, Wang XJ, He MC (2015a) Spatial-temporal characteristics of phosphorus in nonpoint source pollution with grid-based export coefficient model and geographical information system. Water Sci Technol 71:1709–1717. doi:10.2166/wst.2015.146

    Article  CAS  Google Scholar 

  • Liu YQ, Long HL, Li TT, Tu SS (2015b) Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 47:293–301. doi:10.1016/j.landusepol.2015.04.023

    Article  Google Scholar 

  • MEPC (2009) The emission coefficient manual of the first national pollution census. Ministry of Environment Protection of the People’s Republic of China, Beijing

  • Naivinit W, Le Page C, Trebuil G, Gajaseni N (2010) Participatory agent-based modeling and simulation of rice production and labor migrations in northeast Thailand. Environ Model Softw 25:1345–1358. doi:10.1016/j.envsoft.2010.01.012

    Article  Google Scholar 

  • NDRC (2014) National collection of agricultural products’ cost and benefits. China Statistics Press, China

    Google Scholar 

  • Neumann K, Verburg PH, Stehfest E, Muller C (2010) The yield gap of global grain production: a spatial analysis. Agric Syst 103:316–326. doi:10.1016/j.agsy.2010.02.004

    Article  Google Scholar 

  • Niraula R, Kalin L, Srivastava P, Anderson CJ (2013) Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecol Model 268:123–133. doi:10.1016/j.ecolmodel.2013.08.007

    Article  CAS  Google Scholar 

  • Noto LV, Ivanov VY, Bras RL, Vivoni ER (2008) Effects of initialization on response of a fully-distributed hydrologic model. J Hydrol 352:107–125. doi:10.1016/j.jhydrol.2007.12.031

    Article  Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337. doi:10.1111/1467-8306.9302004

    Article  Google Scholar 

  • Qi X (2015) Study on sustainable agricultural land use patterns under the premise of ensuring food security with lower environmental cost. China Agricultural University

  • Qin D, Luo YP, Huang Z (2012) Pollution status and source analysis of water environment in Dongting Lake. Environ Sci Technol 35:193–198

    Google Scholar 

  • Radel C, Schmook B, Chowdhury RR (2010) Agricultural livelihood transition in the southern Yucatán region: diverging paths and their accompanying land changes. Reg Environ Chang 10:205–218. doi:10.1007/s10113-010-0113-9

    Article  Google Scholar 

  • Randa J, Lahtinen J, Camps A, Gasiewski AJ, Hallikainen M, Le Vine DM, Martin-Neira M, Piepmeier J, Rosenkranz PW, Ruf CS, Shiue J, Skou N (2008) Recommended terminology for microwave radiometry

  • Reeves HW, Zellner ML (2010) Linking MODFLOW with an agent-based land-use model to support decision making ground. Water 48:649–660. doi:10.1111/j.1745-6584.2010.00677.x

    CAS  Google Scholar 

  • Ren W, Dai C, Guo H (2015) Estimation of pollution load from non-point source in Baoxianghe watershed based, Yunnan Province on improved export coefficient model. China Environ Sci 35:2400–2408

    Google Scholar 

  • Schreinemachers P, Berger T (2006) Land use decisions in developing countries and their representation in multi-agent systems. Journal of Land Use Science 1:29–44. doi:10.1080/17474230600605202

    Article  Google Scholar 

  • Schreinemachers P, Berger T (2011) An agent-based simulation model of human–environment interactions in agricultural systems. Environ Model Softw 26:845–859. doi:10.1016/j.envsoft.2011.02.004

    Article  Google Scholar 

  • Shen ZY, Liao Q, Hong Q, Gong YW (2012) An overview of research on agricultural non-point source pollution modelling in China. Sep Purif Technol 84:104–111. doi:10.1016/j.seppur.2011.01.018

    Article  CAS  Google Scholar 

  • Shen ZY, Zhong YC, Huang Q, Chen L (2015) Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Res 68:563–571. doi:10.1016/j.watres.2014.10.034

    Article  CAS  Google Scholar 

  • Siciliano G (2012) Urbanization strategies, rural development and land use changes in China: a multiple-level integrated assessment. Land Use Policy 29:165–178. doi:10.1016/j.landusepol.2011.06.003

    Article  Google Scholar 

  • Singh R, Tiwari KN, Mal BC (2006) Hydrological studies for small watershed in India using the ANSWERS model. J Hydrol 318:184–199. doi:10.1016/j.jhydrol.2005.06.011

    Article  Google Scholar 

  • Sun B, Zhang LX, Yang LZ, Zhang FS, Norse D, Zhu ZL (2012) Agricultural non-point source pollution in China: causes and mitigation measures. Ambio 41:370–379. doi:10.1007/s13280-012-0249-6

    Article  CAS  Google Scholar 

  • Tang H, Lijun X, Shenfa H, Min W, Jian W (2011) Review on the characteristics and control measurements of agricultural non-point source pollution. Environ Sci Technol 34:107–112

    CAS  Google Scholar 

  • Tang Q, Bennett SJ, Xu Y, Li Y (2013) Agricultural practices and sustainable livelihoods: rural transformation within the Loess Plateau, China. Appl Geogr 41:15–23. doi:10.1016/j.apgeog.2013.03.007

    Article  Google Scholar 

  • TJST (2014) Taojiang statistical yearbook 1997–2014. Taojiang Statistics Press, Taojiang

    Google Scholar 

  • Trauth R, Xanthopoulos C (1997) Non-point pollution of groundwater in urban areas. Water Res 31:2711–2718. doi:10.1016/S0043-1354(97)00124-3

    Article  CAS  Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK (2008) A method to define a typology for agent-based analysis in regional land-use research. Agric Ecosyst Environ 128:27–36. doi:10.1016/j.agee.2008.04.015

    Article  Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK, Ligtenberg A (2009) An agent-based approach to model land-use change at a regional scale. Landsc Ecol 25:185–199. doi:10.1007/s10980-009-9380-6

    Article  Google Scholar 

  • Valbuena D, Verburg PH, Veldkamp A, Bregt AK, Ligtenberg A (2010) Effects of farmers’ decisions on the landscape structure of a Dutch rural region: an agent-based approach. Landscape Urban Plan 97:98–110. doi:10.1016/j.landurbplan.2010.05.001

    Article  Google Scholar 

  • Vatn A et al (2006) A methodology for integrated economic and environmental analysis of pollution from agriculture. Agric Syst 88:270–293. doi:10.1016/j.agsy.2005.04.002

    Article  Google Scholar 

  • Wang L (2011) Multi-scale modeling of land use change: a case study in Maotiao River Basin, Guizhou. Peking University

  • Worrall F, Burt TP (1999) The impact of land-use change on water quality at the catchment scale: the use of export coefficient and structural models. J Hydrol 221:75–90. doi:10.1016/S0022-1694(99)00084-0

    Article  CAS  Google Scholar 

  • Wu L, Li PC, Ma XY (2016) Estimating nonpoint source pollution load using four modified export coefficient models in a large easily eroded watershed of the loess hilly-gully region, China. Environ Earth Sci 75:Artn 1056. doi:10.1007/S12665-016-5857-1

    Article  Google Scholar 

  • Xia J, Zhai X, Zhang Y (2012) Progress in the research of water environmental non-point source pollution models. Prog Geogr 31:941–952

    Google Scholar 

  • Xiang P-A, Zhou Y, Huang H, Zheng H (2007) Discussion on the green tax stimulation measure of nitrogen fertilizer non-point source pollution control—taking the Dongting Lake area in China as a case. Agric Sci China 6:732–741. doi:10.1016/S1671-2927(07)60106-0

    Article  Google Scholar 

  • Xidonas P, Doukas H, Mavrotas G, Pechak O (2016) Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model. Ann Oper Res 247:395–413. doi:10.1007/s10479-015-1820-x

    Article  Google Scholar 

  • Xu XS, Jeffrey S (1995) Efficiency and technical progress in traditional and modern agriculture: evidence from rice production in China. Am J Agr Econ 77:1363–1363

    Google Scholar 

  • Yan XH, Bauer S, Huo XX (2014) Farm size, land reallocation, and labour migration in rural China. Popul Space Place 20:303–315. doi:10.1002/Psp.1831

    Article  Google Scholar 

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1989) AGNPS—a nonpoint-source pollution model for evaluating agricultural watersheds. J Soil Water Conserv 44:168–173

    Google Scholar 

  • Yu H, Shen ZY (2008) Uncertainty of non-point source pollution. Water Resources Protection 24:1–5

    Google Scholar 

  • Yuan CC, Liu LM, Ren GP, Fu YH (2016) Impacts of farmland transfer on rice yield and nitrogen pollution in Dongting Lake District. Transactions of the CSAE 32:182–190

    Google Scholar 

  • Zare M, Samani AAN, Mohammady M (2016) The impact of land use change on runoff generation in an urbanizing watershed in the north of Iran. Environ Earth Sci 75:Artn 1279. doi:10.1007/S12665-016-6058-7

    Article  Google Scholar 

  • Zhang Q et al (2009) Assessment of surface water quality using multivariate statistical techniques in red soil hilly region: a case study of Xiangjiang watershed, China. Environ Monit Assess 152:123–131. doi:10.1007/s10661-008-0301-y

    Article  CAS  Google Scholar 

  • Zhang P, Liu YH, Pan Y, Yu ZR (2013) Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Math Comput Model 58:588–595. doi:10.1016/j.mcm.2011.10.061

    Article  Google Scholar 

  • Zhang T, Ni JP, Xie DT (2016) Assessment of the relationship between rural non-point source pollution and economic development in the three gorges reservoir area. Environ Sci Pollut R 23:8125–8132. doi:10.1007/s11356-016-6344-7

    Article  Google Scholar 

  • Zhao D, Yan T, Qiao J, Yang L, Lu H (2012) Characteristics of N loss and environmental effect of paddy field in Taihu area. Ecology and Environmental Sciences 21:1149–1154

    Google Scholar 

  • Zhen NH, Fu BJ, Lu YH, Zheng ZM (2014) Changes of livelihood due to land use shifts: a case study of Yanchang County in the Loess Plateau of China. Land Use Policy 40:28–35. doi:10.1016/j.landusepol.2013.05.004

    Article  Google Scholar 

  • Zheng CH, Liu Y, Bluemling B, Chen JN, Mol APJ (2013) Modeling the environmental behavior and performance of livestock farmers in China: an ABM approach. Agric Syst 122:60–72. doi:10.1016/j.agsy.2013.08.005

    Article  Google Scholar 

  • Zhu D, Chang JB (2008) Annual variations of biotic integrity in the upper Yangtze River using an adapted index of biotic integrity (IBI). Ecol Indic 8:564–572. doi:10.1016/j.ecolind.2007.07.004

    Article  CAS  Google Scholar 

  • Zuo HJ et al (2013) Water quality problems and control strategies in China. Understanding Freshwater Quality Problems in a Changing World 361:114–122

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support for this study from the National Nature Science Foundation of China (41130526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Marcus Schulz

Highlights:

(1) A coupled model combining an agent-based model and an improved export coefficient model was developed to simulate the effects of rural livelihood transition on non-point source (NPS) pollution at the small catchment scale.

(2) The transitions of rural household livelihood strategies were investigated and simulated from the perspective of a dynamic process.

(3) The connection between the socioeconomic factors and NPS pollution was analyzed, and the effect of the heterogeneity of farmer’s behavior on NPS pollution was studied.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Liu, L., Ye, J. et al. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM–IECM model. Environ Sci Pollut Res 24, 12899–12917 (2017). https://doi.org/10.1007/s11356-017-8812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8812-0

Keywords

Navigation