Skip to main content

Advertisement

Log in

A review of neurotoxicity of microcystins

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms-produced microcystins are secondary metabolites which can accumulate in the food chain and contaminate water, thus posing a potential threat to the health of aquatic animals and even humans. Microcystin toxicity affects not only the liver but also the other organs, i.e., the brain. The serious neurotoxicity effects caused by microcystins then lead to various symptoms. This review focuses on the neurotoxicity of microcystins. Microcystins can cross blood-brain barrier with the transport of Oatps/OATPs, causing neurostructural, functional, and behavioral changes. In this review, potential uptake mechanisms and neurotoxicity mechanisms are summarized, including neurotransmissions, neurochannels, signal transduction, oxidative stress, and cytoskeleton disruption. However, further researches are needed for detailed studies on signaling pathways and the downstream pathways of neurotoxicity of microcystins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akassoglou K, Malester B, Xu J, Tessarollo L, Rosenbluth J, Chao MV (2004) Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proc Natl Acad Sci USA 101:5075–5080

    Article  CAS  Google Scholar 

  • Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru—Brazil. Toxicology 181:441–446

    Article  Google Scholar 

  • Babica P, Bláha L, Maršálek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms1. J Phycol 42:9–20

    Article  Google Scholar 

  • Baganz D, Staaks G, Steinberg C (1998) Impact of the cyanobacteria toxin, microcystin-LR on behaviour of zebrafish, Danio rerio. Water Res 32:948–952

    Article  CAS  Google Scholar 

  • Baganz D, Staaks G, Pflugmacher S, Steinberg CE (2004) Comparative study of microcystin-LR-induced behavioral changes of two fish species, Danio rerio and Leucaspius delineatus. Environ Toxicol 19:564–570

    Article  CAS  Google Scholar 

  • Betty M, Harnish SW, Rhodes KJ, Cockett MI (1998) Distribution of heterotrimeric G-protein β and γ subunits in the rat brain. Neuroscience 85:475–486

    Article  CAS  Google Scholar 

  • Burke WJ, Li SW, Williams EA, Nonneman R, Zahm DS (2003) 3, 4-Dihydroxyphenylacetaldehyde is the toxic dopamine metabolite in vivo: implications for Parkinson’s disease pathogenesis. Brain Res 989:205–213

    Article  CAS  Google Scholar 

  • Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287

    Article  CAS  Google Scholar 

  • Carmichael WW, Azevedo SM, An JS, Molica RJ, Jochimsen EM, Lau S et al (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ Health Perspect 109:663

    Article  CAS  Google Scholar 

  • Cazenave J, de los Angeles Bistoni M, Pesce SF, Wunderlin DA (2006) Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat Toxicol 76:1–12

    Article  CAS  Google Scholar 

  • Cazenave J, Nores ML, Miceli M, Díaz MP, Wunderlin DA, Bistoni MA (2008) Changes in the swimming activity and the glutathione S-transferase activity of Jenynsia multidentata fed with microcystin-RR. Water Res 42:1299–1307

    Article  CAS  Google Scholar 

  • Chen J, Xie P (2005) Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic Lake Taihu of subtropical China and the risk to human consumption. Adv Mod Environ Toxicol 20:572–584

    Article  CAS  Google Scholar 

  • Chen R, Chang PA, Long DX, Liu CY, Yang L, Wu YJ (2007) G protein β2 subunit interacts directly with neuropathy target esterase and regulates its activity. Int J Biochem Cell Biol 39:124–132

    Article  CAS  Google Scholar 

  • Cheng X, Maher JM, Chen C, Klaassen CD (2005) Tissue distribution and ontogeny of mouse organic anion transporting polypeptides (Oatps). Drug Metab Dispos 33:1062–1073

    Article  CAS  Google Scholar 

  • Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249

    Article  CAS  Google Scholar 

  • Cruz R, Almaguer-Melian W, Bergado-Rosado JA (2003) Glutathione in cognitive function and neurodegeneration. Rev Neurol 36:877–886

    CAS  Google Scholar 

  • Davare MA, Horne MC, Hell JW (2000) Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1. 2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem 275:39710–39717

    Article  CAS  Google Scholar 

  • Drobac D, Tokodi N, Simeunović J, Baltić V, Stanić D, Svirčev Z (2013) Human exposure to cyanotoxins and their effects on health. Arh Hig Rada Toksikol 64:305–315

    Article  CAS  Google Scholar 

  • Falconer IR, Beresford AM, Runnegar MTC (1983) Evidence of liver-damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. Med J Aust 1:511–514

    CAS  Google Scholar 

  • Feurstein D, Holst K, Fischer A, Dietrich DR (2009) Oatp-associated uptake and toxicity of microcystins in primary murine whole brain cells. Toxicol Appl Pharmacol 234:247–255

    Article  CAS  Google Scholar 

  • Feurstein D, Kleinteich J, Heussner AH, Stemmer K, Dietrich DR (2010) Investigation of microcystin congener-dependent uptake into primary murine neurons. Environ Health Perspect 118:1370–1375

    Article  CAS  Google Scholar 

  • Fischer WJ, Altheimer S, Cattori V, Meier PJ, Dietrich DR, Hagenbuch B (2005) Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol Appl Pharmacol 203:257–263

    Article  CAS  Google Scholar 

  • Fischer A, Hoeger SJ, Stemmer K, Feurstein DJ, Knobeloch D, Nussler A, Dietrich DR (2010) The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: a comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol Appl Pharmacol 245:9–20

    Article  CAS  Google Scholar 

  • Florczyk M, Łakomiak A, Woźny M, Brzuzan P (2014) Neurotoxicity of cyanobacterial toxins. J Environ Biol 10:26–43

    Google Scholar 

  • Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, Meier PJ (2000) Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 294:73–79

    CAS  Google Scholar 

  • Giasson BI, Ischiropoulos H, Lee VMY, Trojanowski JQ (2002) The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer’s and Parkinson’s diseases 1, 2. Free Radic Biol Med 32:1264–1275

    Article  CAS  Google Scholar 

  • Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Arch Eur J Physiol 447:653–665

    Article  CAS  Google Scholar 

  • Ibelings BW, Bruning K, De Jonge J, Wolfstein K, Pires LD, Postma J, Burger T (2005) Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microb Ecol 49:487–500

    Article  CAS  Google Scholar 

  • Ju JJ, Ruan QL, Li XB, Liu R, Li YH, Pu YP et al (2013) Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res 20:1823–1830

    Article  CAS  Google Scholar 

  • Kist LW, Rosemberg DB, Pereira TCB, de Azevedo MB, Richetti SK, Leao JD et al (2012) Microcystin-LR acute exposure increases AChE activity via transcriptional ache activation in zebrafish (Danio rerio) brain. Comp Biochem Physiol, Part C Toxicol Pharmacol 155:247–252

    Article  CAS  Google Scholar 

  • Komatsu M, Furukawa T, Ikeda R, Takumi S, Nong Q, Aoyama K et al (2007) Involvement of mitogen-activated protein kinase signaling pathways in microcystin-LR–induced apoptosis after its selective uptake mediated by OATP1B1 and OATP1B3. Toxicol Sci 97:407–416

    Article  CAS  Google Scholar 

  • Li YH, Ye HY, Du M, Zhang YF, Ye BP, Pu YP et al (2009) Induction of chemotaxis to sodium chloride and diacetyl and thermotaxis defects by microcystin-LR exposure in nematode Caenorhabditis elegans. J Environ Sci 21:971–979

    Article  CAS  Google Scholar 

  • Li GY, Yan W, Cai F, Li CR, Chen N, Wang JH (2014a) Spatial learning and memory impairment and pathological change in rats induced by acute exposure to microcystin-LR. Environ Toxicol 29:261–268

    Article  CAS  Google Scholar 

  • Li XB, Zhang X, Ju J, Li Y, Yin L, Pu Y (2014b) Alterations in neurobehaviors and inflammation in hippocampus of rats induced by oral administration of microcystin-LR. Environ Sci Pollut Res 21:12419–12425

    Article  CAS  Google Scholar 

  • Li GY, Yan W, Dang Y, Li J, Liu CS, Wang JH (2015) The role of calcineurin signaling in microcystin-LR triggered neuronal toxicity. Surf Sci Rep 5:11271

    Article  CAS  Google Scholar 

  • Maidana M, Carlis V, Galhardi FG, Yunes JS, Geracitano LA, Monserrat JM, Barros DM (2006) Effects of microcystins over short-and long-term memory and oxidative stress generation in hippocampus of rats. Chem Biol Interact 159:223–234

    Article  CAS  Google Scholar 

  • Martins-Silva C, De Jaeger X, Guzman MS, Lima RD, Santos MS, Kushmerick C et al (2011) Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. Plos One 6:e17611

    Article  CAS  Google Scholar 

  • Mattammal MB, Haring JH, Chung HD, Raghu G, Strong R (1995) An endogenous dopaminergic neurotoxin: implication for Parkinson’s disease. Neurodegeneration 4:271–281

    Article  CAS  Google Scholar 

  • McElhiney J, Lawton LA (2005) Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharmacol 203:219–230

    Article  CAS  Google Scholar 

  • Meng GM, Sun Y, Fu WY, Guo ZL, Xu LH (2011) Microcystin-LR induces cytoskeleton system reorganization through hyperphosphorylation of tau and HSP27 via PP2A inhibition and subsequent activation of the p38 MAPK signaling pathway in neuroendocrine (PC12) cells. Toxicology 290:218–229

    Article  Google Scholar 

  • Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18:137–141

    Article  CAS  Google Scholar 

  • Monks NR, Liu S, Xu Y, Yu H, Bendelow AS, Moscow JA (2007) Potent cytotoxicity of the phosphatase inhibitor microcystin LR and microcystin analogues in OATP1B1-and OATP1B3-expressing HeLa cells. Mol Cancer Ther 6:587–598

    Article  CAS  Google Scholar 

  • Mühlig-Versen M, da Cruz AB, Tschäpe JA, Moser M, Büttner R, Athenstaedt K et al (2005) Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J Neurosci 25:2865–2873

    Article  Google Scholar 

  • Okogwu OI, Xie P, Zhao YY, Fan HH (2014) Organ-dependent response in antioxidants, myoglobin and neuroglobin in goldfish (Carassius auratus) exposed to MC-RR under varying oxygen level. Chemosphere 112:427–434

    Article  CAS  Google Scholar 

  • Paskova V, Adamovsky O, Pikula J, Skocovska B, Band’ouchova H, Horakova J et al (2008) Detoxification and oxidative stress responses along with microcystins accumulation in Japanese quail exposed to cyanobacterial biomass. Sci Total Environ 398:34–47

    Article  CAS  Google Scholar 

  • Pepeu G, Giovannini MG (2004) Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 11:21–27

    Article  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VTS, Ward CJ et al (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26

    Article  CAS  Google Scholar 

  • Ratner N, Mahler HR (1983) Structural organization of filamentous proteins in postsynaptic density. Biochemistry 22:2446–2453

    Article  CAS  Google Scholar 

  • Reinhart PH, Levitan IB (1995) Kinase and phosphatase activities intimately associated with a reconstituted calcium-dependent potassium channel. J Neurosci 15:4572–4579

    CAS  Google Scholar 

  • Routh VH, McArdle JJ, Levin BE (1997) Phosphorylation modulates the activity of the ATP-sensitive K+ channel in the ventromedial hypothalamic nucleus. Brain Res 778:107–119

    Article  CAS  Google Scholar 

  • Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414

    Article  CAS  Google Scholar 

  • Steiner K, Karner T, Dietrich D (2013) Oatp expression profile in Danio rerio upon microcystin-exposure. Toxicol Lett 221:S111

    Article  Google Scholar 

  • Svirčev Z, Krstič S, Miladinov-Mikov M, Baltič V, Vidovič M (2009) Freshwater cyanobacterial blooms and primary liver cancer epidemiological studies in Serbia. J Environ Sci Health C 27:36–55

    Article  Google Scholar 

  • Takumi S, Komatsu M, Furukawa T, Ikeda R, Sumizawa T, Akenaga H et al (2010) p 53 plays an important role in cell fate determination after exposure to microcystin-LR. Environ Health Perspect 118:1292–1298

    Article  CAS  Google Scholar 

  • Terzic A, Findlay I, Hosoya Y, Kurachi Y (1994) Dualistic behavior of ATP-sensitive K+ channels toward intracellular nucleoside diphosphates. Neuron 12:1049–1058

    Article  CAS  Google Scholar 

  • Toh BH, Gallichio HA, Jeffrey PL, Livett BG, Muller HK, Cauchi MN, Clarke FM (1976) Anti-actin stains synapses. Nature 264:648–650

    Article  CAS  Google Scholar 

  • Tsujimoto Y, Shimizu S (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84:187–193

    Article  CAS  Google Scholar 

  • Ufelmann H, Krüger T, Luckas B, Schrenk D (2012) Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 293:59–67

    Article  CAS  Google Scholar 

  • Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F et al (1999) Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science 284:339–343

    Article  CAS  Google Scholar 

  • Wang Q, Xie P, Chen J, Liang GD (2008) Distribution of microcystins in various organs (heart, liver, intestine, gonad, brain, kidney and lung) of Wistar rat via intravenous injection. Toxicon 52:721–727

    Article  CAS  Google Scholar 

  • Wang MH, Wang DZ, Lin L, Hong HS (2010) Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere 81:716–724

    Article  CAS  Google Scholar 

  • Wang JH, Lin FK, Cai F, Yan W, Zhou Q, Xie LQ (2013) Microcystin-LR inhibited hippocampal long-term potential via regulation of the glycogen synthase kinase-3β pathway. Chemosphere 93:23–229

  • Wang H, Liu JH, Lin SY, Wang BL, Xing ML, Guo ZL, Xu LH (2014) MCLR-induced PP2A inhibition and subsequent Rac1 inactivation and hyperphosphorylation of cytoskeleton-associated proteins are involved in cytoskeleton rearrangement in SMMC-7721 human liver cancer cell line. Chemosphere 112:141–153

    Article  CAS  Google Scholar 

  • Yokoyama A, Park HD (2002) Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan. Environ Toxicol 17:424–433

    Article  CAS  Google Scholar 

  • Zeng J, Tu WW, Lazar L, Chen DN, Zhao JS, Xu J (2014) Hyperphosphorylation of microfilament-associated proteins is involved in microcystin-LR-induced toxicity in HL7702 cells. Environ Toxicol 30:981–988

    Article  Google Scholar 

  • Zhao SJ, Li GY, Chen J (2015a) A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. J Proteome 114:197–213

    Article  CAS  Google Scholar 

  • Zhao YY, Xue QJ, Su XM, Xie LQ, Yan YJ, Steinman AD (2015b) Microcystin-LR induced thyroid dysfunction and metabolic disorders in mice. Toxicology 328:135–141

    Article  CAS  Google Scholar 

  • Zhou L, Yu H, Chen K (2002) Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 15:166–171

    Google Scholar 

Download references

Acknowledgments

The authors appreciate Dr. Liang Chen from Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, for his useful suggestions on the manuscript. This work was supported by grants from the National Natural Science Foundations of China (grant number 31322013) and the State Key Laboratory of Freshwater Ecology and Biotechnology (grant number 2014FBZ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, J., Fan, H. et al. A review of neurotoxicity of microcystins. Environ Sci Pollut Res 23, 7211–7219 (2016). https://doi.org/10.1007/s11356-016-6073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6073-y

Keywords

Navigation