Skip to main content
Log in

Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental pollution by trace metal elements (TMEs) is a serious problem worldwide, increasing in parallel with the development of human technology. The present research aimed to examine the response of halophytic species Suaeda fruticosa to oxidative stress posed by combined abiotic stresses. Plants have been grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd2+ or 400 μM Cu2+. The level of glutathione (GSH), phytochelatins (PCs), and antioxidant enzyme activities [ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and catalase (CAT)] as well as lipid peroxidation was studied to see the stress exerted by the TME and the level of tolerance and detoxification strategy adopted by S. fruticosa. Relative growth rate (RGR) decreased under Cd2+ stress in this species, whereas Cu2+ did not have any impact on S. fruticosa performance. Cd2+ or Cu2+ enhanced malondialdehyde, suggesting reactive oxygen species-induced disruption of membrane integrity and oxidative stress in S. fruticosa. On the other hand, the activities of the antioxidant enzymes CAT, APX, and GPX diminished and mineral nutrition was disturbed by metal stress. S. fruticosa was able to synthesize PCs in response to TME toxicity. However, data indicate that GSH levels underwent a significant decrease in roots and leaves of S. fruticosa stressed by Cd2+ or Cu2+. The GSH depletion accompanied by the increase of phytochelatin concentration suggests the involvement of GSH in the synthesis of phytochelatins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adalsteinsson S (1994) Compensatory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. J Plant Nutr 17:1501–1512

    Article  CAS  Google Scholar 

  • Adams F (1971) Soil solution. In: Carson EW (ed) The plant root and its environment. University Press of Virginia, Charlottesville, pp 441–481

    Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments—biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, p. 867

  • Aebi H (1984) Catalase in vitro, methods. Enzymology 105:121–126

    Article  CAS  Google Scholar 

  • Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils—trace metals and metalloids in soils and their bioavailability. Springer, Netherlands, pp 11–50

    Chapter  Google Scholar 

  • Alvarez ME, Lamb C (1997) Oxidative burst-mediated defense responses in plant disease resistance. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 815–839

    Google Scholar 

  • Anderson ME (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113:548–555

    Article  CAS  Google Scholar 

  • Andrade LR, Farina M, Amado Filho GM (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58:117–125

    Article  CAS  Google Scholar 

  • Arbona V, Gomez-Cadenas A (2008) Hormonal modulation of Citrus responses to flooding. J Plant Growth Regul 27:241–250

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57:425–436

    Article  CAS  Google Scholar 

  • Asp H, Gussarsson M, Adalsteinson S, Lensén P (1994) Control of potassium influx in roots of birch (Betula pendula) seedlings exposed to cadmium. J Exp Bot 45:1823–1827

    Article  CAS  Google Scholar 

  • Bankaji I, Sleimi N, López-Climent MF, Perez-Clemente RM, Gomez-Cadenas A (2014) Effects of combined abiotic stresses on growth, trace element accumulation and phytohormone regulation in two halophytic species. J Plant Growth Regul 33:632–643

    Article  CAS  Google Scholar 

  • Ben Hassine A, Bouzid S (2008) Assessment of Atriplex halimus resistance faced with cadmium. Geo-Eco-Trop 32:17–20

    Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bhardwaj P, Ashish KC, Prasad P (2009) Effect of enhanced lead and cadmium in soil on physiological and biochemical attributes of Phaseolus vulgaris. Nat Sci 8:63–75

    Google Scholar 

  • Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F (2009) Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Environ Sci Pollut Res 16:42–53

    Article  CAS  Google Scholar 

  • Cai-Hong P, Su-Jun Z, Zhi-Zhong G, Bao-Shan W (2005) NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa. Physiol Plantarum 125:490–499

    Article  Google Scholar 

  • Candan N, Tarhan L (2003) The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci 163:769–779

    Article  Google Scholar 

  • Ciećko Z, Wyszkowski M, Krajewski W, Zabielska J (2001) Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. Sci Total Environ 281:37–45

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182

    Article  CAS  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–885

    Article  Google Scholar 

  • Estrella-Gómez NE, Sauri-Duch E, Zapata-Pérez O, Santamaría JM (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188–194

    Article  Google Scholar 

  • Eun SO, Youn HS, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:357–365

    Article  CAS  Google Scholar 

  • Fielding JL, Hall JL (1978) A biochemical and cytochemical study of peroxidase activity in roots of Pisum sativum. J Exp Bot 29:969–981

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Physiol 179:945–963

    Article  CAS  Google Scholar 

  • Gadapati WR, Macfie SM (2006) Phytochelatins are only partially correlated with Cd-stress in two species of Brassica. Plant Sci 170:471–480

    Article  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbal MH, Abdelly C (2007a) Cd2+-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl. J Plant Res 120:309–316

    Article  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007b) Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere 67:72–79

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Article  CAS  Google Scholar 

  • Gonçalves JF, Becker AG, Cargnelutti D, Tabaldi AL, Pereira LB, Battisti V, Panevello RM, Morsch VM, Nicoloso FT, Schetinger MRC (2007) Cadmium toxicity causes oxidative stress and induces response of the antioxidant system in cucumber seedlings. Braz J Plant Physiol 19:223–232

    Google Scholar 

  • Hagemeyer J (2004) Ecophysiology of plant growth under heavy metal stress. In: Prasad MNV (ed) Heavy metal stress in plants. Springer, Berlin, pp. 201–222

  • Han RM, Lefèvre I, Albacete A, Pérez-Alfocea F, Barba-Espín G, Díaz-Vivancos P, Quinet M, Ruan CJ, Hernández JA, Cantero-Navarro E, Lutts S (2013) Antioxidant enzyme activities and hormonal status in response to Cd stress in the wetland halophyte Kosteletzkya virginica under saline conditions. Physiol Plantarum 147:352–368

    Article  CAS  Google Scholar 

  • Hassan M, Mansoor S (2014) Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments. Turk J Agric For 38:55–61

    Article  CAS  Google Scholar 

  • Haussling M, Jorns CA, Lehmbecker G, Hercht-Bucholz C, Marschner H (1988) Ion and water uptake in relation to root development of Norway spruce (Picea abies (L.) Karst). J Plant Physiol 133:486–491

    Article  Google Scholar 

  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in study of plant nutrition, 2nd edn. Commonwealth Bureau of Horticulture Tech. Com. 22

  • Hodges DM, Delong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive-substances assay for estimating lipid peroxidation in plant tissue containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hunt R (1990) Basic growth analysis: plant growth analysis for beginners. Unwin Hyman, London, p 112

    Book  Google Scholar 

  • Jurczuk M, Brzóska MM, Moniuszko-Jakoniuk J, Gãazyn-Sidorczuk M, Kulikowska-Karpinska E (2004) Antioxidant enzymes activity and lipid peroxidation in liver and kidney of rats exposed to cadmium and ethanol. Food Chem Toxicol 42:429–438

    Article  CAS  Google Scholar 

  • Kaur G, Singh HP, Batish DR, Negi A, Mahajan P, Rana S, Kohli RK (2012) Arsenic (As) inhibits radicle emergence and elongation in Phaseolus aureus by altering starch-metabolizing enzymes vis-à-vis disruption of oxidative metabolism. Biol Trace Elem Res 146:360–368

    Article  CAS  Google Scholar 

  • Kramer U, Pickering IJ, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  CAS  Google Scholar 

  • Labidi N, Ammari M, Mssedi D, Benzerti M, Snoussi S, Abdelly C (2010) Salt excretion in Suaeda fruticosa. Acta Biol Hung 61:299–312

    Article  Google Scholar 

  • Lefèvre I, Vogel-Mikuš K, Jeromel L, Vavpetič P, Planchon S, Arčon I, Van Elteren JT, Lepoint G, Gobert S, Renaut J, Pelicon P, Lutts S (2014) Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ 37:1299–1320

    Article  Google Scholar 

  • Loureiro S, Santos C, Pinto G, Costa A, Monteiro M, Nogueira AJA, Soares AMVM (2006) Toxicity assessment of two soils from Jales Mine (Portugal) using plants: growth and biochemical parameters. Arch Environ Contam Toxicol 50:182–190

    Article  CAS  Google Scholar 

  • Luna CM, Gonzalez CA, Trippi VS (1994) Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  • Lutts S, Lefèvre I, Delpérée C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation by the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279

    Article  CAS  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    Article  CAS  Google Scholar 

  • Mateos-Naranjo E, Castellanos EM, Perez-Martin A (2014) Zinc tolerance and accumulation in the halophytic species Juncus acutus. Environ Exp Bot 100:114–121

    Article  CAS  Google Scholar 

  • Mediouni C, Benzarti O, Tray B, Ghorbel MH, Jemal F (2006) Cadmium and copper toxicity for tomato seedlings. Agron Sustain Dev 26:227–232

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathia RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Mohamed AA, Castagna A, Ranieri A, Sanita di Toppi L (2012) Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol Biochem 57:15–22

    Article  CAS  Google Scholar 

  • Molas J (2002) Changes of chloroplast ultra structure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environ Exp Bot 47:115–126

    Article  CAS  Google Scholar 

  • Mroczek-Zdyrska M, Wojcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328

    Article  CAS  Google Scholar 

  • Na GN, Salt DE (2010) The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ Exp Bot 72:18–25

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nalewajko C, Olaveson MM (1995) Differential responses of growth, photosynthesis, respiration, and phosphate uptake to copper in copper tolerant and copper-intolerant strains of Scenedesmus acutus (Chlorophyceae). Can J Bot 73:1295–1303

    Article  CAS  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora - Morphology, Distribution, Functional Ecology of Plants 204:316–324

    Article  Google Scholar 

  • Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled DD, Ghorbal MH, Zarrouk M (2009) Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiol Plant 31:237–247

    Article  CAS  Google Scholar 

  • Oueslati S, Ksouri R, Pichette A, Lavoie S, Girard-Lalancette K, Mshvildadze V, Abdelly C, Legault J (2014) A new flavonol glycoside from the medicinal halophyte Suaeda fruticosa. Nat Prod Res 28:960–966

    Article  CAS  Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Gabriella S (2007) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  Google Scholar 

  • Redondo-Gómez S, Andrades-Moreno L, Mateos-Naranjo E, Parra R, Valera-Burgos J, Aroca R (2011) Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass Spartina densiflora. J Experi Bot 62:5521–5530

    Article  Google Scholar 

  • Sai Kachout S, Ban Mansoura A, Leclere JC, Jaffel K, Rejeb MN, Ourghi Z (2009) Effects of heavy metals on antioxidant activities of Atriplex hortensis and Atriplex rosea. J Applied Bot Food Qual 83:37–43

    Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  CAS  Google Scholar 

  • Shafi M, Bakht J, Guoping Z, Razi-U-Din E, Islam AM (2010) Effect of cadmium and salinity stresses on root morphology of wheat. Pak J Bot 42:2747–2754

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Shevyakova NI, Netronina IA, Aronova EE, Kuznetsov VV (2003) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 5:678–685

    Article  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246

    Article  CAS  Google Scholar 

  • Sleimi N, Bankaji I, Dallai M, Kefi O (2014) Accumulation des éléments traces et tolérance au stress métallique chez les halophytes colonisant les bordures de la lagune de Bizerte. Rev Ecol-Terre Vie 69:49–59

    Google Scholar 

  • Sleimi N, Guerfali S, Bankaji I (2015) Biochemical indicators of salt stress in Plantago maritima: implications for environmental stress assessment. Ecol Indic 48:570–577

    Article  CAS  Google Scholar 

  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444

    Article  CAS  Google Scholar 

  • Solís-Domínguez FA, González-Chávez MC, Carrillo-González R, Rodríguez-Vázquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636

    Article  Google Scholar 

  • Stolt JP, Sneller FEC, Brynelsson T, Lundborg T, Schat H (2003) Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot 49:21–28

    Article  CAS  Google Scholar 

  • Stroinski A, Kozlowska M (1997) Cadmium induced oxidative stress in potato tuber. Acta Soc Bot Pol 66:189–195

    Article  CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    Article  CAS  Google Scholar 

  • Uchida R (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva JA, Uchida R (eds) Plant nutrient management in Hawaii’s soils, approaches for tropical and subtropical agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii, Manoa, pp 31–55

    Google Scholar 

  • Vassilev A, Yordanov I (1997) Reductive analysis of factors limiting growth of cadmium-treated plants: a review. Bulg J Plant Physiol 23:114–133

    CAS  Google Scholar 

  • Wang H (2013) Cu and Cd induced cytotoxicity involving lipid peroxidation and sulfhydryl compounds in the hyperaccumulator and nonaccumulator varieties of Commelina communis. IJESD 4:331–335

    Article  CAS  Google Scholar 

  • Wojcik M, Vangronsveld J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens: I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–161

    CAS  Google Scholar 

  • Xu P, Liu L, Zeng G, Huang D, Lai C, Zhao M, Huang C, Li N, Wei Z, Wu H, Zhang C, Lai M, He Y (2014) Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98:6409–6418

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Abdelly C (2014) Interactions between lead on nutrients (Ca2+, K+, N), and their consequences on growth in Sesuvium portulacastrum and Brassica juncea. J Bioremed Biodeg 5:243

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellon, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sleimi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bankaji, I., Caçador, I. & Sleimi, N. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Environ Sci Pollut Res 22, 13058–13069 (2015). https://doi.org/10.1007/s11356-015-4414-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4414-x

Keywords

Navigation