Skip to main content

Advertisement

Log in

Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Selenate and selenite are two main kinds of inorganic selenium (Se) sources in soil, but these substances can pose threats to the environment. Phytoextraction is an emerging technology to remove Se from polluted soils by using a hyper-accumulator. In this study, a pot experiment was conducted to investigate Se phytoextraction potential of pak choi (Brassica chinensis L.) and to determine the effects of Se on growth and Se accumulation of pak choi under successive planting conditions (four crops). Results showed that Se concentration in pak choi shoots significantly increased as selenate and selenite rates increased. Se concentration increased in successive crops on soil treated with selenite; by contrast, Se concentration decreased in crops on soil treated with selenate. Se concentrations of pak choi on soil treated with selenate were higher than those on soil treated with selenite. The maximum Se accumulations amount in crops on selenite- and selenate-treated soil were 7818 and 8828 μg · pot−1, respectively. High bioconcentration factor (BCF) values indicated that pak choi could accumulate more Se from Se-contaminated soil. The Se phytoextraction efficiency of pak choi increased under successive planting conditions in selenite and selenate treatments; the maximum Se phytoextraction efficiencies of four successive crops of pak choi on selenite- and selenate-treated soil were 4.91 and 31.90 %, respectively. These differences between selenate and selenite treatments were attributed to the differences in Se forms in soil. Total and available Se contents in soil decreased significantly during repeated planting crops on soil treated with selenate; conversely, total and available Se contents decreased slightly in crops on soil treated with selenite. These results suggested that pak choi could highly tolerate and accumulate Se. Thus, pak choi may remove Se from contaminated soil; indeed, pak choi can be used in the phytoextraction of Se in polluted soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. doi:10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • Arvy MP (1993) Selenate and selenite uptake and translocation in bean plants (Phaseolus vulgaris). J Exp Bot 44:1083–1087. doi:10.1093/jxb/44.6.1083

    Article  CAS  Google Scholar 

  • Bao SD (2000) Analysis methods of soil agro-chemistry. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31:238–244. doi:10.1016/j.jfca.2013.06.002

    Article  Google Scholar 

  • Boyd R (2011) Selenium stories. Nat Chem 3:570. doi:10.1038/nchem.1076

    Article  CAS  Google Scholar 

  • Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernandez A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant Soil 379:35–50. doi:10.1007/s11104-014-2043-7

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E et al (2012) Grain accumulation of selenium species in rice (Oryza sativa L.). Environ Sci Technol 46:5557–5564. doi:10.1021/es203871j

    Article  CAS  Google Scholar 

  • Cartes P, Gianfreda L, Mora ML (2005) Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms. Plant Soil 276:359–367. doi:10.1007/s11104-005-5691-9

    Article  CAS  Google Scholar 

  • Chen QX, Shi WM, Wang XC (2010) Selenium speciation and distribution characteristics in the rhizosphere soil of rice (Oryza sativa L.) seedlings. Commun Soil Sci Plant Anal 41:1411–1425. doi:10.1080/00103624.2010.482164

    Article  CAS  Google Scholar 

  • Chen GC, Xl Z, Zhou Y, Zhang JF, Owens G (2013) A short-term study to evaluate the uptake and accumulation of arsenic in Asian willow (Salix sp.) from arsenic-contaminated water. Environ Sci Pollut Res 21:3275–3284. doi:10.1007/s11356-013-2288-3

    Article  Google Scholar 

  • Dhillon KS, Dhillon SK (2009) Accumulation and distribution of selenium in some vegetable crops grown in selenate-Se treated clay loam soil. Front Agric China 3:366–373. doi:10.1007/s11703-009-0070-6

    Article  Google Scholar 

  • Duan LQ, Song JM, Li XG, Yuan HM, Xu SS (2010) Distribution of selenium and its relationship to the eco-environment in Bohai Bay seawater. Mar Chem 121:87–99. doi:10.1016/j.marchem.2010.03.007

    Article  CAS  Google Scholar 

  • Esringü A, Turan M (2012) The roles of diethylenetriamine pentaacetate (DTPA) and ethylenediamine disuccinate (EDDS) in remediation of selenium from contaminated soil by brussels sprouts (Brassica oleracea var. gemmifera). Water Air Soil Pollut 223:351–362. doi:10.1007/s11270-011-0863-0

    Article  Google Scholar 

  • Fordyce FM (2013) Selenium Deficiency and Toxicity in the Environment. In: Selinus O, Alloway BJ, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology: Revised Edition. Springer, p 375–416. doi:10.1007/978-94-007-4375-5_16

  • Fordyce FM, Zhang GD, Green K, Liu XP (2000) Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China. Appl Geochem 15:117–132. doi:10.1016/S0883-2927(99)00035-9

    Article  CAS  Google Scholar 

  • Hamilton JW, Beath OA (1964) Selenium in vegetables, amount and chemical form of selenium in vegetable plants. J Agric Food Chem 12:371–374. doi:10.1021/jf60134a018

    Article  CAS  Google Scholar 

  • Han D, Li XH, Xiong SL, Tu SX, Chen ZG, Li JP, Xie ZJ (2013) Selenium uptake, speciation and stressed response of Nicotiana tabacum L. Environ Exp Bot 95:6–14. doi:10.1016/j.envexpbot.2013.07.001

    Article  CAS  Google Scholar 

  • Hasan SH, Ranjan D, Talat M (2010) Agro-industrial waste 'wheat bran' for the biosorptive remediation of selenium through continuous up-flow fixed-bed column. J Hazard Mater 181:1134–1142. doi:10.1016/j.jhazmat.2010.05.133

    Article  CAS  Google Scholar 

  • Hawkesford MJ, Zhao FJ (2007) Strategies for increasing the selenium content of wheat. J Cereal Sci 46:282–292

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B (2013) Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regul 70:149–157. doi:10.1007/s10725-013-9788-5

    Article  CAS  Google Scholar 

  • Hegarty PV (1997) Trace elements in human nutrition and health. World Health Organization (1996), ISBN: 92 4 156173 4. Trends Food Sci Technol 8:282. doi:10.1016/S0924-2244(97)87555-3

    Article  CAS  Google Scholar 

  • Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313. doi:10.1007/s11104-010-0345-y

    Article  CAS  Google Scholar 

  • Kikkert J, Berkelaar E (2013) Plant uptake and translocation of inorganic and organic forms of selenium. Arch Environ Contam Toxicol 65:458–465. doi:10.1007/s00244-013-9926-0

    Article  CAS  Google Scholar 

  • Kikkert J, Hale B, Berkelaar E (2013) Selenium accumulation in durum wheat and spring canola as a function of amending soils with selenite, selenate and or sulphate. Plant Soil 372:629–641. doi:10.1007/s11104-013-1773-2

    Article  CAS  Google Scholar 

  • Lavu RV, Du Laing G, Van de Wiele T, Pratti VL, Willekens K, Vandecasteele B, Tack F (2012) Fertilizing soil with selenium fertilizers: impact on concentration, speciation, and bioaccessibility of selenium in leek (Allium ampeloprasum). J Agric Food Chem 60:10930-–10935. doi:10.1021/jf302931z

    Article  CAS  Google Scholar 

  • Lee S, Woodard HJ, Doolittle JJ (2011) Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Sci Plant Nutr 57:696–704. doi:10.1080/00380768.2011.623282

    Article  CAS  Google Scholar 

  • Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56. doi:10.1016/S0147-6513(03)00095-2

    Article  CAS  Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheatsupplied with selenate or selenite. New Phytol 178:92–102. doi:10.1111/j.1469-8137.2007.02343.x

    Article  CAS  Google Scholar 

  • Li HF, Lombi E, Stroud JL, McGrath SP, Zhao FJ (2010) Selenium speciation in soil and rice: influence of water management and Se fertilization. J Agric Food Chem 58:11837–11843. doi:10.1021/jf1026185

    Article  CAS  Google Scholar 

  • Li Z, Wu LH, Luo YM, Christie P (2013) Dynamics of plant metal uptake and metal changes in whole soil and soil particle fractions during repeated phytoextraction. Plant Soil 374:857–869. doi:10.1007/s11104-013-1927-2

    Article  Google Scholar 

  • Li Z, Wu L, Hu P, Luo Y, Zhang H, Christie P (2014) Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environ Pollut 189:176–183. doi:10.1016/j.envpol.2014.02.034

    Article  CAS  Google Scholar 

  • Lim TT, Goh KH (2005) Selenium extractability from a contaminated fine soil fraction: implication on soil cleanup. Chemosphere 58:91–101. doi:10.1016/j.chemosphere.2004.08.093

    Article  CAS  Google Scholar 

  • Longchamp M, Angeli N, Castrec-Rouelle M (2012) Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil 362:107–117. doi:10.1007/s11104-012-1259-7

    Article  Google Scholar 

  • McGrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. doi:10.1016/s0958-1669(03)00060-0

    Article  CAS  Google Scholar 

  • Oram LL, Strawn DG, Möller G (2010) Chemical speciation and bioavailability of selenium in the rhizosphere of Symphyotrichum eatonii from reclaimed mine soils. Environ Sci Technol 45:870–875. doi:10.1021/es1029766

    Article  Google Scholar 

  • Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang YQ (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249:157–165. doi:10.1023/A:1022545629940

    Article  CAS  Google Scholar 

  • Perez-Sanchez D, Thorne MC, Limer LMC (2012) A mathematical model for the behaviour of Se-79 in soils and plants that takes account of seasonal variations in soil hydrology. J Radiol Prot 32:11–37. doi:10.1088/0952-4746/32/1/11

    Article  CAS  Google Scholar 

  • Pickering IJ, Prince RC, Salt DE, George GN (2000) Quantitative, chemically specific imaging of selenium transformation in plants. Proc Natl Acad Sci U S A 97:10717–10722. doi:10.1073/pnas.200244597

    Article  CAS  Google Scholar 

  • Ramos S, Faquin V, Guilherme L et al (2010) Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ 12:583–587

    Google Scholar 

  • Sharma S, Bansal A, Dhillon SK, Dhillon KS (2010) Comparative effects of selenate and selenite on growth and biochemical composition of rapeseed (Brassica napus L.). Plant Soil 329:339–348. doi:10.1007/s11104-009-0162-3

    Article  CAS  Google Scholar 

  • Skorupa JP (1998) Selenium poisoning of fish and wildlife in nature: lessons from twelve real-world examples. In: Frankenberger Jr WT, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York, pp 315–354

  • Takeda A, Tsukada H, Nakao A, Takaku Y, Hisamatsu S (2013) Time-dependent changes of phytoavailability of Cs added to allophanic Andosols in laboratory cultivations and extraction tests. J Environ Radioactiv 122:29–36. doi:10.1016/j.jenvrad.2013.02.005

    Article  CAS  Google Scholar 

  • Tan JA, Zhu WY, Wang WY, Li RB, Hou SF, Wang DC, Yang LS (2002) Selenium in soil and endemic diseases in China. Sci Total Environ 284:227–235. doi:10.1016/S0048-9697(01)00889-0

    Article  CAS  Google Scholar 

  • Tang XY, Zhu YG, Cui YS, Duan J, Tang L (2006) The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environ Int 32:682–689. doi:10.1016/j.envint.2006.03.003

    Article  Google Scholar 

  • Terry N, Zayed A, De Souza M, Tarun A (2000) Selenium in higher plants. Annu Rev Plant Biol 51:401–432. doi:10.1146/annurev.arplant.51.1.401

    Article  CAS  Google Scholar 

  • Thosaikham W, Jitmanee K, Sittipout R, Maneetong S, Chantiratikul A, Chantiratikul P (2014) Evaluation of selenium species in selenium-enriched pakchoi (Brassica chinensis Jusl var parachinensis (Bailey) Tsen & Lee) using mixed ion-pair reversed phase HPLC-ICP-MS. Food Chem 145:736–742. doi:10.1016/j.foodchem.2013.08.116

    Article  CAS  Google Scholar 

  • Tolu J, Di Tullo P, Le Hecho I, Thiry Y, Pannier F, Potin-Gautier M, Bueno M (2014) A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils. Anal Bioanal Chem 406:1221–1231. doi:10.1007/s00216-013-7323-1

    Article  CAS  Google Scholar 

  • Wang SS, Liang DL, Wang D, Wei W, Fu DD, Lin ZQ (2012) Selenium fractionation and speciation in agriculture soils and accumulation in corn (Zea mays L.) under field conditions in Shaanxi Province, China. Sci Total Environ 427:159–164. doi:10.1016/j.scitotenv.2012.03.091

    Article  Google Scholar 

  • Wu XP, Liang DL, Bao JD, Xue RL (2009) Effects of different concentrations of selenate and selenite on growth and physiology of Chinese cabbage. Acta Sci Circumst 29:2163–2171 (in Chinese)

    CAS  Google Scholar 

  • Yawata A, Oishi Y, Anan Y, Ogra Y (2010) Comparison of selenium metabolism in three Brassicaceae plants. J Health Sci 56:699–704. doi:10.1248/jhs.56.699

    Article  CAS  Google Scholar 

  • Zhao CY, Ren JH, Xue CZ, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206. doi:10.1007/s11104-005-7011-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for the financial support provided by the National Natural Science Foundation of China (No. 41171379, to D.L. Liang) and the Innovative Research Team Program of Northwest A&F University. We also thank two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongli Liang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liang, D., Qin, S. et al. Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environ Sci Pollut Res 22, 11076–11086 (2015). https://doi.org/10.1007/s11356-015-4344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4344-7

Keywords

Navigation