Skip to main content
Log in

Metal-based particles in human amniotic fluids of fetuses with normal karyotype and congenital malformation—a pilot study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study explores the inorganic composition of amniotic fluid in healthy human fetuses and fetuses with congenital malformation with a special attention to presence of metal-based solid particles. Amniotic fluid originates from maternal blood and provides fetus mechanical protection and nutrients. In spite of this crucial role, the environmental impact on the composition of amniotic fluid remains poorly studied. The samples of human amniotic fluids were obtained by amniocentesis, including both healthy pregnancies and those with congenital malformations. The samples were analysed using several techniques, including Raman microspectroscopy, scanning electron microscopy with energy-dispersed spectrometry (SEM-EDS), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis. Several metal-based particles containing barium, titanium, iron, and other elements were detected by SEM-EDS and Raman microspectroscopy. XRD analysis detected only sodium chloride as the main component of all amniotic fluid samples. Infrared spectroscopy detected protein-like organic components. Majority of particles were in form of agglomerates up to tens of micrometres in size, consisting of mainly submicron particles. By statistical analysis (multiple correspondence analysis), it was observed that groups of healthy and diagnosed fetuses form two separate groups and therefore, qualitative differences in chemical composition may have distinct biological impact. Overall, our results suggest that metal-based nanosized pollutants penetrate into the amniotic fluid and may affect human fetuses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayris P, Delmelle P (2012) Volcanic and atmospheric controls on ash iron solubility: a review. Phys Chem Earth 45–46:103–112. doi:10.1016/j.pce.2011.04.013

    Article  Google Scholar 

  • Barker DJ (2007) The origins of the developmental origins theory. J Intern Med 261:412–417. doi:10.1111/j.1365-2796.2007.01809.x

    Article  CAS  Google Scholar 

  • Bosetti C, Nieuwenhuijsen MJ, Gallus S, Cipriani S, La Vecchia C, Parazzini F (2010) Ambient particulate matter and preterm birth or birth weight: a review of the literature. Arch Toxicol 84:447–460. doi:10.1007/s00204-010-0514-z

    Article  CAS  Google Scholar 

  • Bourque Ch W (2008) Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci 9:519–531. doi:10.1038/nrn2400

    Article  Google Scholar 

  • Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360:1233–1242

    Article  CAS  Google Scholar 

  • Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Ch 32:33–177. doi:10.1016/j.progsolidstchem.2004.08.001

    Article  CAS  Google Scholar 

  • Cundy AB, Hopkinson L, Whitby RLD (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51. doi:10.1016/j.scitotenv.2008.07.002

    Article  CAS  Google Scholar 

  • Figuerola A, Di Corato R, Manna L, Pellegrino T (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62:126–143. doi:10.1016/j.phrs.2009.12.012

    Article  CAS  Google Scholar 

  • Gatti A. M., Bosco P., Rivasi F., Bianca S., Ettore G., Gaetti L., Montanari S., Bartoloni G., Gazzolo D. (2011) Heavy metals nanoparticles in fetal kidney and liver tissues. Frontiers in Bioscience (Elite edition, E3):221-6

  • Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D (2004) Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiology 15:36–45

    Article  Google Scholar 

  • Graça G, Moreira AS, Correia AJV, Goodfellow BJ, Barros AS, Duarte IF, Carreira IM, Galhano E, Pita C, do Céu Almeida M, Gil AM (2013) Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: a possible avenue for early diagnosis of prenatal disorders? Anal Chim Acta 764:24–31. doi:10.1016/j.aca.2012.12.023

    Article  Google Scholar 

  • Hackley B, Feinstein A, Dixon J (2007) Air pollution: impact on maternal and perinatal health. J Midwifery Wom Heal 52:435–443

    Article  Google Scholar 

  • Heinrich U, Fuhst R, Rittinghausen S, Cretzenberg O, Bellmenn B, Koch W (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black and titanium dioxide. Inhal Toxicol 7:533–556. doi:10.3109/08958379509015211

    Article  CAS  Google Scholar 

  • Kalter H (2003) Frequency of neural tube defects in Mexico. Birth Defects Res A 67:529. doi:10.1002/bdra.10049

    Article  CAS  Google Scholar 

  • Lacasana M, Esplugues A, Ballester F (2005) Exposure to ambient air pollution and prenatal and early childhood health effects. Eur J Epidemiol 20:183–199

    Article  CAS  Google Scholar 

  • Laumbach RJ (2010) Outdoor air pollutants and patient health. Am Fam Physician 8:175–180

    Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Google Scholar 

  • Li JJ, Muralikrishnan S, Ng C-T, Lanry Yung L-Y, Bay B-H (2010) Nanoparticle-induced pulmonary toxicity. Exp Biol Med 235:1025–1033. doi:10.1258/ebm.2010.010021

    Article  CAS  Google Scholar 

  • Maisonet M, Correa A, Misra D, Jaakkola JJ (2004) A review of the literature on the effect of ambient air pollution on fetal growth. Environ Res 95:106–115

    Article  CAS  Google Scholar 

  • Morris SS, Victora CG, Barros FC, Halpern R, Menezes AM, César JA, Horta BL, Tomasi E (1998) Length and ponderal index at birth: associations with mortality, hospitalizations, development and post-natal growth in Brazilian infants. Int J Epidemiol 27:242–247

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M, Friberg LT (2007) Handbook on the toxicology of metals, 3rd edn. Academic, Boston. ISBN 978-0-12-369413-3

    Google Scholar 

  • Oberdörster G (2000) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Persp 113:823–839

    Article  Google Scholar 

  • Peikertová P, Kukutschová J, Vávra I, Matějka V, Životský O, Vaculík M, Lee PW, Filip P (2013) Water suspended nanosized particles released from nonairborne break wear debris. Wear 306:89–96. doi:10.1016/j.wear.2013.07.008

    Article  Google Scholar 

  • Perera FP, Illman SM, Kinney PL, Whyatt RM, Kelvin EA, Shepard P, Evans D, Fullilove M, Ford J, Miller RL, Meyer IH, Rauh VA (2002) The challenge of preventing environmentally related disease in young children: community-based research in New York City. Environ Health Persp 110:197–204

    Article  Google Scholar 

  • Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, Bernert T, Garfinkel R, Tu YH, Diaz D, Dietrich J, Whyatt RM (2003) Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Persp 111:201–206

    Article  CAS  Google Scholar 

  • Richards M, Hardy R, Kuh D, Wadsworth ME (2002) Birthweight, postnatal growth and cognitive function in a national UK birth cohort. Int J Epidemiol 31:342–348

    Article  Google Scholar 

  • Ritz B (2010) Air-pollution and congenital anomalies. Occup Environ Med 67:221–222. doi:10.1136/oem.2009.051201

    Article  Google Scholar 

  • Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15:36–43. doi:10.1016/j.mib.2011.11.006

    Article  Google Scholar 

  • Schwartz J (2004) Air pollution and children’s health. Pediatrics 113:1037–1043

    Google Scholar 

  • Shah PS, Balkhair T (2011) Knowledge synthesis group on determinants of preterm/LBW births. Air pollution and birth outcomes: a systematic review. Environ Int 37:498–516. doi:10.1016/j.envint.2010.10.009

    Article  CAS  Google Scholar 

  • Singleton P, Sainsbury D (2006) Dictionary of microbiology and molecular biology, 3rd edn. Wiley, Chirchester. doi:10.1002/9780470056981. ISBN 978-0-47-005698-1

    Book  Google Scholar 

  • Sram RJ, Binkova B, Dejmek J, Bobak M (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Persp 113:375–382

    Article  CAS  Google Scholar 

  • Thomas R, Park I-K, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930. doi:10.3390/ijms140815910

    Article  Google Scholar 

  • Tong X-L, Wang L, Gao T-B, Qin Y-G, Qi Y-Q, Xu Y-P (2009) Potential function of amniotic fluid in fetal development—novel insights by comparing the composition of human amniotic fluid with umbilical cord and maternal serum at mid and late gestation. J Chin Med Assoc 72:368–373. doi:10.1016/S1726-4901(09)70389-2

    Article  CAS  Google Scholar 

  • UK HEALTH AND SAFETY EXECUTIVE (2004) Nanoparticles: An occupational hygiene review. Research Report 274. Online, [08-2013] available from <http://www.hse.gov.uk/research/rrhtm/rr274.htm>

  • Vrijheid M, Martinez D, Manzanares S, Dadvand P, Schembari A, Rankin J, Nieuwenhuijsen M (2011) Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Persp 119:598–606. doi:10.1289/ehp.1002946

    Article  CAS  Google Scholar 

  • Wang L, Pinkerton KE (2007) Air pollutant effects on fetal and early postnatal development. Birth Defects Res C 81:144–154. doi:10.1002/bdrc.20097

    Article  CAS  Google Scholar 

  • Warheit B, Sayers CM, Reed KL, Swain KA (2008) Health effects related to nanoparticles exposures: environmental, health and safety considerations for assessing hazards and risk. Pharmacol Therapeut 120:35–42. doi:10.1016/j.pharmthera.2008.07.001

    Article  CAS  Google Scholar 

  • Wigle DT, Arbuckle TE, Turner MC, Bérubé A, Yang Q, Liu S, Krewski D (2008) Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Env Heal B 11:373–517. doi:10.1080/10937400801921320

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank the project reg. No. SP2014/76 and project Nanotechnology—the basis for international cooperation project, reg. no. CZ.1.07/2.3.00/20.0074 supported by Operational Programme ‘Education for competitiveness’ funded by Structural Funds of the European Union and state budget of the Czech Republic for financial support and Marie Heliová for SEM-EDS analysis. This paper has also been elaborated in the framework of the project New creative teams in priorities of scientific research, reg. no. CZ.1.07/2.3.00/30.0055, supported by Operational Programme Education for Competitiveness and co-financed by the European Social Fund and the state budget of the Czech Republic. Authors also thank Mr. Daniel Casten for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Barošová.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barošová, H., Dvořáčková, J., Motyka, O. et al. Metal-based particles in human amniotic fluids of fetuses with normal karyotype and congenital malformation—a pilot study. Environ Sci Pollut Res 22, 7582–7589 (2015). https://doi.org/10.1007/s11356-014-3987-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3987-0

Keywords

Navigation