Skip to main content
Log in

Polyaromatic hydrocarbon exposure: an ecological impact ambiguity

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polyaromatic hydrocarbons (PAHs) represent a fraction of petroleum hydrocarbons and are currently one of the foremost sources of generating energy in today’s contemporary society. However, evidence highlighted in this review show that PAH pollution, as a result of oil spills, hazardous PAH-contaminated working environments and technologies which do not efficiently utilise fuels, as well as natural sources of emissions (e.g. forest fires) may have significant health implications for all taxa. The extent of damage to organisms from PAH exposure is dependent on numerous factors including degree and type of PAH exposure, nature of the environment contaminated (i.e. terrestrial or aquatic), the ability of an organism to relocate to pristine environments, type and sensitivity of organism to specific hydrocarbon fractions and ability of the organism to metabolise different PAH fractions. The review highlights the fact that studies on the potential damage of PAHs should be carried out using mixtures of hydrocarbons as opposed to individual hydrocarbon fractions due to the scarcity of individual fractions being a sole contaminant. Furthermore, potential damage of PAH-contaminated sites should be assessed using an entire ecological impact outlook of the affected area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). U.S. Department of Health and Human Services, Public Health Service, Atlanta

    Google Scholar 

  • Aguilera F, Méndez J, Pásaro E, Laffon B (2010) Review on the effects of exposure to spilled oils on human health. J Appl Toxicol 30:291–301

    CAS  Google Scholar 

  • Alkurdi F, Karabet F, Dimashki M (2013) Characterization, concentrations and emission rates of polycyclic aromatic hydrocarbons in the exhaust emissions from in-service vehicles in Damascus. Atmos Res 120–121:68–77

    Article  Google Scholar 

  • Allan LL, Schlezinger JJ, Shansab M, Sherr DH (2006) CYP1A1 in polycyclic aromatic hydrocarbon-induced B lymphocyte growth suppression. Biochem Biophys Res Commun 342:227–235

    Article  CAS  Google Scholar 

  • Autrup H (2000) Genetic polymorphisms in human xenobiotica metabolizing enzymes as susceptibility factors in toxic response. Mutat Res 464:65–76

    Article  CAS  Google Scholar 

  • Audebert M, Riu A, Jacques C, Hillenweck A, Jamin EL, Zalko D, Cravedi JP (2010) Use of the yH2AX assay for assessing the genotoxicity of polycyclic aromatic hydrocarbons in human cell lines. Toxicol Lett 199:182–192

    Article  CAS  Google Scholar 

  • Awal MR (2009) Environmentally conscious fossil energy production; chapter 1: Environmentally conscious petroleum engineering. Pages: 1–86, doi:10.1002/9780470432747.ch1

  • Azhari A, Dalimin MN, Wee ST (2011) Polycyclic aromatic hydrocarbons (PAHs) pollution from vehicle emission in the environment of highway roadside in Johor, Malaysia. 2011 International Conference on Biotech. Environ. Manag. IPCBEE vol.18 (2011)

  • Baek KH, Kim HS, Oh HM, Yoon BD, Kim J, Lee IS (2004) Effects of crude oil, oil components, and bioremediation on plant growth. J Environ Sci Health, Part A: Toxic/Hazard Subst Environ Eng A39(9):2465–2472

    CAS  Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45(2–3):106–114

    Article  CAS  Google Scholar 

  • Banger K, Toor GS, Chirenje T, Ma L (2010) Polycyclic aromatic hydrocarbons in urban soils of different land uses in Miami, Florida. Soil Sed Contam 19:231–243

    CAS  Google Scholar 

  • Barr DB, Wang RY, Needham LL (2004) Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the National Children’s Study. Environ Health Perspect 113(8):1083–1091

    Article  Google Scholar 

  • Beach CA, Gupta RC (1992) Human biomonitoring and the 32P-postlabeling assay. Carcinogenesis 13(7):1053–1074

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Klerks PL, Nyman JA (2003) Toxicity to freshwater organisms from oils and oil spill chemical treatments in laboratory microcosms. Environl Poll 122:205–215

    Article  CAS  Google Scholar 

  • Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92(2):526–536

    Article  CAS  Google Scholar 

  • Billiard SM, Meyer JN, Wassenberg DM, Hodson PV, Di Giulio RT (2007) Nonadditive effects of PAHs on early vertebrate development: mechanisms and implications for risk assessment. Toxicol Sci 105(1):5–23

    Article  Google Scholar 

  • Brandon T, Alonso B, Alonso L (eds) (2000) A biological assessment of Laguna del Tigre National Park, Petén, Guatemala. RAP Bulletin of Biological Assessment Conservation International, Washington, DC

    Google Scholar 

  • Brunstrom B, Broman D, Naf C (1990) Embryotoxicity of polycyclic aromatic hydrocarbons (PAHs) in three domestic avian species, and of PAHs and coplanar polychlorinated biphenyls (PCBs) in the common eider. Environ, Poll 67:133–143

    Article  CAS  Google Scholar 

  • Burczynski ME, Lin HK, Penning TM (1999) Dehydrogenase of PAH activation catalyzed by human dihydrodiol and oxidative stress: implications for the alternative pathway by polycyclic aromatic hydrocarbons (PAHs). Electrophiles Cancer Res 59:607–614

    CAS  Google Scholar 

  • Campos VM, Merino I, Casado R, Pacios LF, Gómez L (2008) Review. Phytoremediation of organic pollutants. Spanish J Agric Res 6(Special issue):38–47

    Google Scholar 

  • Cavalieri EL, Rogan EG (1992) The approach to understanding aromatic hydrocarbon carcinogenesis. The central role of radical cations in metabolic activation. Pharmacol Therapeut 55:183–199

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2010) Canadian Soil Quality. Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). Scientific Criteria Document (revised). 216 pp

  • Coppock RW, Campbell CAJ, (1997) A Literature Review and Discussion of the Toxicological Hazards of Oilfield Pollutants in Cattle. Alberta Research Council, AB. ARC 97(2) 440

  • Coppock RW, Mostrom MS, Khan AA, Semalulu SS (1995) Toxicology of oil field pollutants in cattle: a review. Vet Human Toxicol 37(6):569–576

    CAS  Google Scholar 

  • Detmar J, Rabaglino T, Taniuchi Y, Oh J, Acton BM, Benito A, Nunez G, Jurisicova A (2006) Embryonic loss due to exposure to polycyclic aromatic hydrocarbons is mediated by Bax. Apoptosis 11(8):1413–1425

    Article  CAS  Google Scholar 

  • Detmar J, Rennie MY, Whiteley KJ, Qu D, Taniuchi Y, Shang X, Caspe RF, Adamson SL, Sled JG, Jurisicova A (2008) Fetal growth restriction triggered by polycyclic aromatic hydrocarbons is associated with altered placental vasculature and AhR-dependent changes in cell death. Am J Physiol Endocrinol Metab 295:519–530

    Article  Google Scholar 

  • Douben PET (2003) PAH’s: an ecotoxicological perspective: Introduction. Wiley online library

  • Dudley AC, Peden-Adams MM, EuDaly J, Pollenz RS, Keil DE (2001) An aryl hydrocarbon receptor independent mechanism of JP-8 jet fuel immunotoxicity in Ah-responsive and Ah-nonresponsive mice. Toxicol Sci 59:251–259

    Article  CAS  Google Scholar 

  • Elskus AA (2005) The implications of low-affinity AhR for TCDD insensitivity in frogs. Toxicol Sci 88(1):1–3

    Article  CAS  Google Scholar 

  • Erstfeld KM, Ashbrook JS (1999) Effects of chronic low level PAH contamination on soil invertebrate communities. Chemosphere 39(12):2117–2139

    Article  CAS  Google Scholar 

  • Ertl RP, Winston GW (1998) The microsomal mixed function oxidase system of amphibians and reptiles: components, activities and induction. Comp Biochem Physiol–C: Pharmacol Toxicol Endocrinol 121(1–3):85–105

    Article  CAS  Google Scholar 

  • Falcó G, Domingo JL, Llobet JM, Teixidó A, Casas C, Müller L (2003) Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia, Spain. J Food Prot 66:2325–2331

    Google Scholar 

  • Fedato RP, Simonato JD, Martinez CB, Sofia SH (2010) Genetic damage in the bivalve mollusk Corbicula fluminea induced by the water-soluble fraction of gasoline. Mutat Res 19(1-2):80–85

    Google Scholar 

  • Fismes JE, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Quality 31:1649–1656

    Article  CAS  Google Scholar 

  • Flaveny CA, Perdew GH (2009) Transgenic humanized AHR mouse reveals differences between human and mouse AHR ligand selectivity. Mol Cell Pharmacol 1(3):119–123

    Article  CAS  Google Scholar 

  • Fouchecourt MO, Arnold M, Berny P, Videmann B, Rether B, Riviere JL (1999) Assessment of the bioavailability of PAHs in rats exposed to a polluted soil by natural routes: induction of EROD activity and DNA adducts and PAH burden in both liver and lung. Environl Res Section A 80:330–339

    Article  CAS  Google Scholar 

  • Franco SS, Nardocci AC, Günther WMR (2008) PAH biomarkers for human health risk assessment: a review of the state-of-the-art. Cadernos de Saúde Pública 4:S569–S580

    Google Scholar 

  • French BL, Reichert WL, Horn T, Nishimoto M, Sanborn HR, Stein JE (1996) Accumulation and dose–response of hepatic DNA adducts in English sole (Pkuronectes vetulus) exposed to a gradient of contaminated sediments. Aquat Toxicol 36:1–16

    Article  CAS  Google Scholar 

  • Frenzilli G, Scarcelli V, Del Barga I, Nigro M, Förlin L, Bolognesi C, Sturve J (2004) DNA damage in eelpout (Zoarces viviparus) from Göteborg harbour. Mutatn Res 552:187–195

    Article  CAS  Google Scholar 

  • Gehle K (2009) Agency for Toxic Substances and Disease Registry (ATSDR) Case Studies in Environmental Medicine Toxicity of Polycyclic Aromatic Hydrocarbons (PAHs)

  • Georgiadis P, Kyrtopoulos SA (1999) Molecular epidemiological approaches to the study of the genotoxic effects of urban air pollution. Mutat Res 428:91–98

    Article  CAS  Google Scholar 

  • Geraci JR (1990) Physiologic and toxic effects on Cetaceans, Chapter 6: sea mammals and oil: confronting the risks. Academic Press, Inc, San Diego, pp 167–197

    Google Scholar 

  • Hahn ME (1998) The aryl hydrocarbon receptor: a comparative perspective. Comp Biochem Physiol—C: Pharmacol Toxicol Endocrinol 121(1–3):23–53

    Article  CAS  Google Scholar 

  • Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem-Biol Inter 141(1–2):131–160

    Article  CAS  Google Scholar 

  • Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lampseritis JM (2006) Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J Exp Zool 305A:693–706

    Article  CAS  Google Scholar 

  • Han Y, Xia Y, Zhu P, Qiao S, Zhao R, Jin N, Wang S, Song L, Fu G, Wang X (2010) Reproductive hormones in relation to polycyclic aromatic hydrocarbon (PAH) metabolites among non-occupational exposure of males. Sci Total Environ 408:768–773

    Article  CAS  Google Scholar 

  • Hannam ML, Bamber SD, Galloway TS, Moody JA, Jones MB (2010) Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. Chemosphere 78(7):779–784

    Article  CAS  Google Scholar 

  • Haynes BF, Markert ML, Sempowski GD, Patel DD, Hale LP (2000) The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-1 infection. Ann Rev Immunol 18:529–560

    Article  CAS  Google Scholar 

  • Hersikorn BD, Smits JEG (2011) Compromised metamorphosis and thyroid hormone changes in wood frogs (Lithobates sylvaticus) raised on reclaimed wetlands on the Athabasca oil sands. Environ Poll 159:596–601

    Article  CAS  Google Scholar 

  • Herve JC, Crump D, Jones SP, Mundy LJ, Giesy JP, Zwiernik MJ, Bursian SJ, Jones PD, Wiseman SB, Wan Y, Kennedy SW (2010) Cytochrome P4501A induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and two chlorinated dibenzofurans in primary hepatocyte cultures of three avian species. Toxicol Sci 113(2):380–391

    Article  CAS  Google Scholar 

  • Hlavica P (2011) Insect cytochromes P450: Topology of structural elements predicted to govern catalytic versatility. J. Inorg. Biochem 105(10):1354–1364

    Google Scholar 

  • HolmesWN CKP, Cronshaw J (1978) The effects of ingested petroleum on oviposition and some aspects of reproduction in experimental colonies of mallard ducks (Anas platyrhynchos). J Reprod Fert 54:335–347

    Article  Google Scholar 

  • Hsu PC, Chen IY, Pan CH, Wu KY, Pan MH, Chen JR, Chen CJ, Chang-Chien GP, Hsu CH, Liu CS, Wu MT (2006) Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. Int Arch Occup Environ Health 79(5):349–356

    Article  CAS  Google Scholar 

  • Irwin RJ, VanMouwerik M, Stevens L, Seese MD, Basham W (1997) Environmental contaminants encyclopedia. National Park Service, Water Resources Division, Fort Collins, Colorado

    Google Scholar 

  • Iwano S, Ichikawa M, Takizawa S, Hashimoto H, Miyamoto Y (2010) Identification of AhR-regulated genes involved in PAH-induced immunotoxicity using a highly-sensitive DNA chip, 3D-geneTM human immunity and metabolic syndrome 9k. Toxicol in Vitro 24:85–91

    Article  CAS  Google Scholar 

  • Jansestraat Z (2003) Monitoring human occupational and environmental exposures to polycyclic aromatic compounds. Ann Occup Hyg 47(5):349–378

    Article  Google Scholar 

  • Jeng HA, Yu L (2008) Alteration of sperm quality and hormone levels by polycyclic aromatic hydrocarbons on airborne particulate particles. J Environ Sci Health Part A—Toxic/Hazardous Substances Environ Eng 43(7):675–681

    Article  CAS  Google Scholar 

  • Jenssen BM (1994) Review article: effects of oil pollution, chemically treated oil, and cleaning on thermal balance of birds. Environ Poll 86(2):207–215

    Article  CAS  Google Scholar 

  • Jewett SC, Dean TA, Woodin BR, Hoberg MK, Stegeman JJ (2002) Exposure to hydrocarbons 10 years after the Exxon Valdez oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Mar Environ Res 54:21–48

    Article  CAS  Google Scholar 

  • Jones DE, Magnin-Bissel G, Holladay S (2009) Detection of polycyclic aromatic hydrocarbons in the shed skins of corn snakes (Elaphe guttata). Ecotoxicol Environl Safety 72:2033–2035

    Article  CAS  Google Scholar 

  • Jongeneelen FJ (2001) Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 45(1):3–13

    CAS  Google Scholar 

  • Jurjanz S, Rychen G, Feidt C (2008) Dairy livestock exposure to persistent organic pollutants and their transfer to milk: a review. Impact of pollution on animal products, NATO Science for Peace and Security Series C: Environ. l Security II: 63–83

  • Kannan K, Perrotta E (2007) Polycyclic aromatic hydrocarbons (PAHs) in livers of California sea otters. Chemosphere 71:649–655

    Article  Google Scholar 

  • Karakaya A (2004) Effects of occupational polycyclic aromatic hydrocarbon exposure on T-lymphocyte functions and natural killer cell activity in asphalt and coke oven workers. Human Exp Toxicol 23:317–322

    Article  CAS  Google Scholar 

  • Kavlock RJ, Daston GR, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA (1996) Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored Workshop. Environ Health Perspect 104(4):715–740

    Google Scholar 

  • Kim E, Iwata H, Yasui T, Inoue N, Lee J, Franks DG, Karchner SI, Hahn ME, Tanabe S (2008) Molecular basis for differential dioxin sensitivity in birds: characterization of avian AHR isoforms., interdisciplinary studies on environmental chemistry. Biol. Res. Chem.l Poll. s 81–86

  • Lee H, Cho E, Jung JH, Ohta A (2007) Evaluation on antagonist activities of polycyclic aromatic hydrocarbons using the yeast two-hybrid detection system for endocrine disruptors. Environ Monit Assess 129:87–95

    Article  CAS  Google Scholar 

  • Lee LL, Lee JSC, Waldman SD, Casper RF, Grynpas MD (2002) Polycyclic aromatic hydrocarbons present in cigarette smoke cause bone loss in an ovariectomized rat model. Bone 30(6):917–923

    Article  CAS  Google Scholar 

  • Lewis C, Pook C, Galloway T (2008) Reproductive toxicity of the water accommodated fraction (WAF) of crude oil in the polychaetes Arenicola marina (L.) and Nereis virens (Sars). Aquat. Toxicol 90(1):73–81

    CAS  Google Scholar 

  • Lewtas J (2006) Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat Res 636:95–133

    Google Scholar 

  • Lifshitz M, Sofer S, Gorodischer R (2003) Hydrocarbon poisoning in children in Tehran: a 5-year retrospective study. Wild Environ Med 14(2):78–82

    Article  Google Scholar 

  • Lima I, Peck MR, Osten JR, Soares AMVM, Guilhermino L, Rotchell JM (2008) Ras gene in marine mussels: a molecular level response to petrochemical exposure. Mar Poll Bull 56:633–640

    Article  CAS  Google Scholar 

  • Luiselli L, Akani GC (2003) An indirect assessment of the effects of oil pollution on the diversity and functioning of turtle communities in the Niger Delta, Nigeria. Animal Biodivers Cons 26(1):57–65

    Google Scholar 

  • Marquis O, Millery A, Guittonneau S, Miaud C (2006) Toxicity of PAHs and jelly protection of eggs in the common frog Rana temporaria. Amphibia-Reptilia 27:472–475

    Article  Google Scholar 

  • Marsili L, Caruso A, Fossi MC, Zanardelli M, Politi E, Focardi S (2001) Polycyclic aromatic hydrocarbons (PaHs) in subcutaneous biopsies of Mediterranean cetaceans. Chemosphere 44(2):147–154

    Article  CAS  Google Scholar 

  • Mimura J, Kuriyama YF (2003) Functional role of AhR in the expression of toxic effects by TCDD. Biochim Biophys Acta 1619:263–268

    Article  CAS  Google Scholar 

  • Mollerup S, Berge G, Bæra R, Skaug V, Hewer A, Phillips DH, Stangeland L, Haugen A (2006) Sex differences in risk of lung cancer: expression of genes in the PAH bioactivation pathway in relation to smoking and bulky DNA adducts. Int J Cancer 119(4):741–744

    Article  CAS  Google Scholar 

  • Murty VS, Penning TM (1992) Polycyclic aromatic hydrocarbon (PAH) ortho-quinone conjugate chemistry: kinetics of thiol addition to PAH ortho-quinones and structures of thioether adducts of naphthalene-1,2-dione. Chem-Biol Inter 84(2):169–188

    Article  CAS  Google Scholar 

  • Nikolopouloua M, Pasadakisb N, Kalogerakisa N (2006) Enhanced bioremediation of crude oil utilizing lipophilic fertilizers. Desalination 211:286–295

    Article  Google Scholar 

  • O’Hara TM, O’Shea TJ (2001) Toxicology. Chapter 22 in “CRC handbook of marine mammal medicine”. CRC Press, New York

  • Okoh A (2006) Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotech Mol Biol Rev 1(2):38–50

    Google Scholar 

  • Olatubi OA (2005) Metabolism of mixtures of polyaromatic hydrocarbons (PAHs) by Cunninghamella Elegans. Masters thesis, University of Ibadan, Nigeria

  • Onwurah INE, Ogugua VN, Onyike NB, Ochonogor AE, Otitoju OF (2007) Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. Int J Environ Health Res 1(4):307–320

    CAS  Google Scholar 

  • Oppenheimer SB (2006) Cellular basis of cancer metastasis: a review of fundamentals and new advances. Acta histochem 108:327–334

    Article  CAS  Google Scholar 

  • Patin S (2004) Crude oil spills, environmental impact of. Encyclopaedia of Energy 1:737–748

    Article  Google Scholar 

  • Patri M, Padmini A, Babu PP (2009) Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: a brief perspective. Ann Neurosci 16(1):22–30

    Article  CAS  Google Scholar 

  • Perera FP, Rauh V, Tsai W, Kinney P, Camann D, Barr D, Bernert T, Garfinkel R, Tu Y, Diaz D, Dietrich J, Whyatt RM (2002) Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 111:201–205

    Article  Google Scholar 

  • Perera FP, Whyatt RM, Jedrychowski W, Rauh V, Manchester D, Santella RM, Ottman R (1998) A study of the effects of environmental polycyclic aromatic hydrocarbons on birth outcomes in Poland. American J Epidemiol 147(3):309–314

    Article  CAS  Google Scholar 

  • Perera FP, Jedrychowski W, Rauh V, Whyatt RM (1999) Molecular epidemiologic research on the effects of environmental pollutants on the foetus. Environ Health Perspect 107(3):451–460

    Article  CAS  Google Scholar 

  • Perez C, Velando A, Munilla I, Lopez-Alonso M, Oro D (2008) Monitoring polycyclic aromatic hydrocarbon pollution in the marine environment after the prestige oil spill by means of seabird blood analysis. Environ Sci Technol 42:707–713

    Article  CAS  Google Scholar 

  • Poirier MC (2004) Chemical induced DNA damage and human cancer risk. Nature rev (cancer) 4:630–637

    Article  CAS  Google Scholar 

  • Poon R, Chu I. (1998) Toxicology of synthetic fuels—mini review. Preprints of symposia (pp. 451–455).

  • Rowatt AJ, Depowell JJ, Powell WH (2003) ARNT gene multiplicity in amphibians: characterization of arnt2 from the frog Xenopus laevis. J Exp Zool Part B: Mol Dev Evol 300B(1):48–57

    Article  CAS  Google Scholar 

  • Robertson SJ, McGill WB, Massicotte HB, Rutherford PM (2007) Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biolo Rev 82:213–240

    Article  Google Scholar 

  • Schoket B (1998) DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mut Res 424:143–153

    Google Scholar 

  • Scott JG, Liu N, Wen Z (1998) Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. Comp Biochem Physiol—C: Pharmacol Toxicol 121(1–3):147–155

    CAS  Google Scholar 

  • Shiverick KT, Salafia C (1999) Cigarette smoking and pregnancy. I: ovarian, uterine and placental effects. Placenta 20:265–272

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. App Environ Microbiol 69(1):483–489

    Article  CAS  Google Scholar 

  • Singh VK, Patel DK, Jyoti RS, Mathur N, Siddiqui MKJ (2008) Blood levels of polycyclic aromatic hydrocarbons in children and their association with oxidative stress indices: an Indian perspective. Clin Biochem 41:152–161

    Article  CAS  Google Scholar 

  • Smith PN, Cobb GP, Godard-Codding C, Hoff D, McMurry ST, Rainwater TR, Reynolds KD (2007) Contaminant exposure in terrestrial vertebrates. Environ Poll 150:41–64

    Article  CAS  Google Scholar 

  • Souza-Bastos LR, Freire CA (2011) Osmoregulation of the resident estuarine fish Atherinella brasiliensis was still affected by an oil spill (Vicuña tanker, Paranaguá Bay, Brazil), 7 months after the accident. Sci Total Environ 409:1229–1234

    Article  CAS  Google Scholar 

  • Terry MB, Gammon MD, Zhang FF, Eng SM, Sagiv SK, Paykin AB, Wang Q, Hayes S, Teitelbaum SL, Neugut AI, Santella RM (2004) Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon–DNA adducts, cigarette smoking, and breast cancer risk. Can Epidemiol Biomark Prev 13:2053–2058

    CAS  Google Scholar 

  • Toriba A, Hayakawa K (2007) Biomarkers of exposure to polycyclic aromatic hydrocarbons and related compounds. J Health Sci 53(6):631–638

    Article  CAS  Google Scholar 

  • Trosko JE (2001) Commentary: is the concept of “tumor promotion” a useful paradigm? Mol Carcinog 30(3):131–137

    Article  CAS  Google Scholar 

  • Trosko JE, Ruch RJ (1998) Cell–cell communication in carcinogenesis. Frontiers in Biosci 3:d208–d236

    CAS  Google Scholar 

  • United States Environmental Protection Agency (US EPA) (2009) Water: Basic Information about Regulated Drinking Water Contaminants. List of all regulated contaminants. EPA 816-F-09-004., http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf

  • Vinggaard AM, Hnida C, Larsen JC (2000) Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro. Toxicol 145:173–183

    Article  CAS  Google Scholar 

  • Vinyals GC, D’Errico A, Malats N, Kogevinas M (2004) Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occup and Environ Med 61:e12

    Article  Google Scholar 

  • Wassenberg DM, Di Giulio RT (2004) Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ Health Perspect 112((17):1658–1664

    Article  CAS  Google Scholar 

  • White PA (2002) The genotoxicity of priority polycyclic aromatic hydrocarbons in complex mixtures. Mutat Res 515:85–98

    Article  CAS  Google Scholar 

  • WHO (2010) IARC monographs on the evaluation of carcinogenic risks to humans, volume 92 some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures

  • WHO (2000) Air quality guidelines, second edition. Number No. 91, Copenhagen, Denmark

  • Wojtaszek BF (2000): Quantifying toxicological stress in amphibians: the influence of hydrophobicity on PAH and PCB elimination rates in northern leopard frogs (Rana pipiens). Master’s Thesis, Department of Biological Sciences, University of Windsor Windsor, Ontario Canada

  • Xue W, Warshawsky (2004) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93

    Article  Google Scholar 

  • Zhou H, Qu Y, Wu H, Liao C, Zheng J, Diao X, Xue Q (2010) Molecular phylogenies and evolutionary behaviour of AhR (aryl hydrocarbon receptor) pathway genes in aquatic animals: implications for the toxicology mechanism of some persistent organic pollutants (POPs). Chemosphere 78:193–205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Truskewycz.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, A., Truskewycz, A. Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res 20, 4311–4326 (2013). https://doi.org/10.1007/s11356-013-1620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1620-2

Keywords

Navigation