Skip to main content
Log in

The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The bioaccessibility of soil heavy metals is the solubility of soil heavy metals in synthetic human digestive juice, which is usually determined using in vitro digestion test. To reveal the effects of digestive enzymes on soil heavy metals bioaccessibility, three representative in vitro digestion tests, Simple Bioaccessibility Extraction Test (SBET), Physiologically Based Extraction Test (PBET), and Simple Gastrointestinal Extraction Test (SGET), were chosen. The bioaccessibility of soil Cu, Zn, and Pb in each method were respectively evaluated with and without digestive enzymes, and the differences were compared. The results showed that the effects of digestive enzymes varied with different methods and elements. Because of digestive enzymes addition, the environmental change from acid gastric phase to neutral intestinal phase of PBET did not result in apparently decrease of the bioaccessibility of soil Cu. However, the solubility of soil Zn and Pb were pH-dependent. For SGET, when digestive enzymes were added, its results reflected more variations resulting from soil and element types. The impacts of digestive enzymes on heavy metal dissolution are mostly seen in the intestinal phase. Therefore, digestive enzyme addition is indispensable to the gastrointestinal digestion methods (PBET and SGET), while the pepsin addition is not important for the methods only comprised of gastric digestion (SBET).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bosso ST, Enzweiler J (2008) Bioaccessible lead in soils, slag, and mine wastes from an abandoned mining district in Brazil. Environ Geochem Hlth 30:219–229

    Article  CAS  Google Scholar 

  • Cave MR, Wragg J, Palumbo B et al. (2003): Measurement of the bioaccessibility of arsenic in UK soils, technical report. British Geological Survey, Environmental Agency: R and D Technical Report P5-062/TR02

  • Chen Z, Mayer LM, Weston DP et al (2002) Inhibition of digestive enzyme activities by copper in the guts of various marine benthic invertebrates. Environ Toxicol Chem 21:1243–1248

    Article  CAS  Google Scholar 

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90:543–556

    Article  CAS  Google Scholar 

  • Davis A, Ruby MV, Bergstrom PD (1994) Factors controlling lead bioavailability in the Butte mining district, Montana, USA. Environ Geochem Hlth 16(3/4):147–157

    Article  CAS  Google Scholar 

  • Dean JR, Ma R (2007) Approaches to assess the oral bioaccessibility of persistent organic pollutants: a critical review. Chemosphere 68:1399–1407

    Article  CAS  Google Scholar 

  • Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 26:235–244

    Article  CAS  Google Scholar 

  • Hamel SC, Buckley B, Lioy PJ (1998) Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environ Sci Technol 32:358–362

    Article  CAS  Google Scholar 

  • Hamel SC, Ellickson KM, Lioy PJ (1999) The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: mass-balance and soil recapture. Sci Total Environ 243(244):273–283

    Article  Google Scholar 

  • Hu X, Zhang Y, Luo J et al (2011) Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ Pollut 159:1215–1221

    Article  CAS  Google Scholar 

  • Intawongse M, Dean JR (2006) In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAc-Trend Anal Chem 25:876–886

    Article  CAS  Google Scholar 

  • Intawongse M, Dean JR (2008) Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environ Pollut 152:60–72

    Article  CAS  Google Scholar 

  • Iyer HV, Przybycien TM (1996) A model for metal affinity protein precipitation. J colloid interf Sci 177:391–400

    Article  CAS  Google Scholar 

  • Jackson GS, Murray I, Hosszu LLP et al (2001) Location and properties of metal-binding sites on the human prion protein. P Natl Acad Sci USA 98:8531–8535

    Article  CAS  Google Scholar 

  • Kientz K, Jimenez BD, Perez L et al (2003) In vitro bioaccessibility of metals in soils from a superfund site in Puerto Rico. B. Environ Contam Tox 70:927–934

    Article  CAS  Google Scholar 

  • Kim JY, Kim KW, Lee JU et al (2002) Assessment of As and heavy metal contamination in the vicinity of Duckum Au-Ag mine, Korea. Environ. Geochem Hlth 24:213–225

    Article  Google Scholar 

  • Kojima S, Kiyozumi M, Mishima M et al (1985) Effects of three proteins on absorption of cadmium in rats. Toxicology 34:161–171

    Article  CAS  Google Scholar 

  • Krejpcio Z, Wojciak RW (2002) The influence of Al3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254

    CAS  Google Scholar 

  • Kumar A, Galaev LY, Mattiasson B (1998) Metal chelate affinity precipitation: a new approach to protein purification. Bioseparation 7:185–194

    Article  CAS  Google Scholar 

  • Lamb DT, Ming H, Megharaj M et al (2009) Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. J Hazard Mater 171:1150–1158

    Article  CAS  Google Scholar 

  • Li Y, Zhang M (2012) A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils. Environ Sci Pollut Res. doi:10.1007/s11356-012-1234-0

  • Mercier G, Duchesne J, Carles-Gibergues A (2002) A simple and fast screening test to detect soils polluted by lead. Environ Pollut 118:285–296

    Article  CAS  Google Scholar 

  • Morrison AL, Gulson BL (2007) Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Sci Total Environ 382:30–42

    Article  CAS  Google Scholar 

  • Nakos G (1987) Phosphorus adsorption by forest soils. Commun Soil Sci Plan 18:279–286

    Article  CAS  Google Scholar 

  • Oomen AG, Hack A, Minekus M et al (2002) Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36:3326–3334

    Article  CAS  Google Scholar 

  • Oomen AG, Tolls J, Sips AJAM et al (2003a) In vitro intestinal lead uptake and transport in relation to speciation. Arch Environ Con Tox 44:116–124

    Article  CAS  Google Scholar 

  • Oomen AG, Rompelberg CJM, Bruil MA et al (2003b) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Con Tox 44:281–287

    Article  CAS  Google Scholar 

  • Oomen AG, Rompelberg CJM, Kamp EV et al (2004) Effect of bile type on the bioaccessibility of soil contaminants in an in vitro digestion model. Arch Environ Con Tox 46:183–188

    CAS  Google Scholar 

  • Pelfrene A, Waterlot C, Mazzuca M et al (2011) Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (Northern France). Environ Geochem Hlth 33:477–493

    Article  CAS  Google Scholar 

  • Poggio L, Vrscaj B, Schulin R et al (2009) Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environ Pollut 157:680–689

    Article  CAS  Google Scholar 

  • Rodriguez RR, Basta NT (1999) An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environ Sci Technol 33:642–649

    Article  CAS  Google Scholar 

  • Roussel H, Waterlot C, Pelfrene A et al (2010) Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Arch Environ Contam Toxicol 58:945–954

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Link TE et al (1993) Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27:2870–2877

    Article  CAS  Google Scholar 

  • Ruby MV, Davis A, Schoof R et al (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30:422–430

    Article  CAS  Google Scholar 

  • Sialelli J, Urquhart GJ, Davidson CM et al (2010) Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environ Geochem Hlth 32(6):517–527

    Article  CAS  Google Scholar 

  • Schroder JL, Basta NT, Casteel SW et al (2004) Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. J Environ Qual 33:513–521

    Article  CAS  Google Scholar 

  • SEPA (State Environmental Protection Agency) (GB17138-1997): Soil quality-determination of copper and zinc: flame atomic absorption spectrophotemetry, China

  • Steinhart H, Beyer MG, Kirchgessner M (1975) On the complex formation of proteins with Cu ions under acidic conditions (in German). Z Lebensm Unters Forsch 159:73–77

    Article  CAS  Google Scholar 

  • The United States Pharmacopoeia XXII, Inc (1990): US Pharmacopoeia convention. Twinbrook Parkway, Rockville, MD: 1178

  • Turner A, Simmonds L (2006) Elemental concentrations and metal bioaccessibility in UK household dust. Sci Total Environ 371:74–81

    Article  CAS  Google Scholar 

  • Turner A, Ip KH (2007) Bioaccessibility of metals in dust from the indoor environment: application of a physiologically based extraction test. Environ Sci Technol 41:7851–7856

    Article  CAS  Google Scholar 

  • Turnlund JR (1998) Human whole-body copper metabolism. Am J Clin Nutr 67(5):960S–496S

    CAS  Google Scholar 

  • Wragg J, Cave M, Basta N et al (2011) An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Sci Total Environ 409:4016–4030

    CAS  Google Scholar 

  • Williams TM, Rawlings BG, Smith B et al (1998) In-vitro determination of arsenic bioavailability in contaminated soil and mineral beneficiation waste from Ron Phibun, Southern Thailand: a basis for improved human risk assessment. Environ Geochem Hlth 20:169–177

    Article  CAS  Google Scholar 

  • Yamazaki K, Powers SP, LaRusso NF (1988) Biliary proteins: assessment of quantitative techniques and comparison in gallstone and nongallstone subjects. J Lipid Res 29:1055–1063

    CAS  Google Scholar 

  • Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plan 19:1467–1476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (Grant NO. 21177108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-kui Zhang.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Demisie, W. & Zhang, Mk. The function of digestive enzymes on Cu, Zn, and Pb release from soil in in vitro digestion tests. Environ Sci Pollut Res 20, 4993–5002 (2013). https://doi.org/10.1007/s11356-013-1472-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-013-1472-9

Keywords

Navigation