Skip to main content
Log in

Assessment of Digital Image Correlation Measurement Errors: Methodology and Results

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

A Commentary to this article was published on 16 February 2013

Abstract

Optical full-field measurement methods such as Digital Image Correlation (DIC) are increasingly used in the field of experimental mechanics, but they still suffer from a lack of information about their metrological performances. To assess the performance of DIC techniques and give some practical rules for users, a collaborative work has been carried out by the Workgroup “Metrology” of the French CNRS research network 2519 “MCIMS (Mesures de Champs et Identification en Mécanique des Solides / Full-field measurement and identification in solid mechanics, http://www.ifma.fr/lami/gdr2519)”. A methodology is proposed to assess the metrological performances of the image processing algorithms that constitute their main component, the knowledge of which being required for a global assessment of the whole measurement system. The study is based on displacement error assessment from synthetic speckle images. Series of synthetic reference and deformed images with random patterns have been generated, assuming a sinusoidal displacement field with various frequencies and amplitudes. Displacements are evaluated by several DIC packages based on various formulations and used in the French community. Evaluated displacements are compared with the exact imposed values and errors are statistically analyzed. Results show general trends rather independent of the implementations but strongly correlated with the assumptions of the underlying algorithms. Various error regimes are identified, for which the dependence of the uncertainty with the parameters of the algorithms, such as subset size, gray level interpolation or shape functions, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For instance, \(\Phi 1 \mbox{\sf I}l\mbox{\sf O}f\mbox{\sf D}16\) corresponds to a DIC formulation with a first order shape function (ϕ = 1), a bi-linear gray level interpolation (i = l), a full optimization (o = f) and a 16 pixels subset size (d = 16).

  2. The authors of the academic codes have participated to this research work and they have run themselves the tests that have lead to the present results.

References

  1. Cloud G (1998) Optical methods of engineering analysis, ISBN 0-521-45087-X. Cambridge University Press, Cambridge

    Google Scholar 

  2. Rastogi P (ed) (1999) Photomechanics, ISBN 3-540-65990-0. Springer, Berlin

    Google Scholar 

  3. Molimard J, Lee J, Surrel Y, Vautrin A (2002) Full-field optical techniques: applications to strain measurement and mechanical identification. In: Invited keynote at the 10th European conference on composite materials (ECCM10). Bruges, Belgium

  4. Surrel Y (2004) Full-field optical methods for mechanical engineering: essential concepts to find one’s way. In: Invited keynote at the 2nd international conference on composites testing and model identification. Bristol, UK

  5. Grédiac M (2004) The use of full-field measurement methods in composite material characterization: interest and limitations. Compos Part A 35:751–761

    Article  Google Scholar 

  6. Sharpe J, William N (eds) (2007) Springer handbook of experimental solid mechanics, ISBN 0-387-30877-6. Springer, Berlin

    Google Scholar 

  7. Patterson E, Hack E, Brailly P, Burguete R, Saleem Q, Siebert T, Tomlinson R, Whelan M (2007) Calibration and evaluation of optical systems for full-field strain measurement. Opt Lasers Eng 45(5):550–564

    Article  Google Scholar 

  8. Patterson E, Brailly P, Burguete R, Hack E, Siebert T, Whelan M (2007) A challenge for high-performance full-field strain measurement systems. Strain 43(3):167–180

    Article  Google Scholar 

  9. Peters W, Ranson W (1982) Digital imaging techniques in experimental stress analysis. Opt Eng 21(3):427–431

    Article  Google Scholar 

  10. Sutton M, Wolters W, Peters W, McNiell S (1983) Determination of displacements using an improved digital correlation method. Image Vis Comput 1:133–139

    Article  Google Scholar 

  11. Bruck H, McNeill S, Sutton M, Peters W (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29:261–267

    Article  Google Scholar 

  12. Sjödahl M (1994) Electronic speckle photography—increased accuracy by nonintegral pixel shifting. J Appl Opt 33:6667–6673

    Article  Google Scholar 

  13. Sjödahl M (1997) Accuracy in electronic speckle photography. J Appl Opt 36:2875–2885

    Article  Google Scholar 

  14. Choi S, Shah S (1997) Measurement of deformations on concrete subjected to compression using image correlation. Exp Mech 37(3):307–313

    Article  Google Scholar 

  15. Vendroux G, Knauss W (1998) Submicron deformation field: part 2. Improved digital image correlation. Exp Mech 38:85–92

    Google Scholar 

  16. Vacher P, Dumoulin S, Morestin F, Mguil-Touchal S (1999) Bidimensional strain measurement using digital images. J Mech Eng Sci C 213:811–817

    Article  Google Scholar 

  17. Doumalin P, Bornert M, Caldemaison D (1999) Microextensometry by image correlation applied to micromechanical studies using the scanning electron microscopy. In: Proceedings of the international conference on advanced technology in experimental mechanics. Japan Soc. of Exp. Eng., Ube City, Japan, pp 81–86

    Google Scholar 

  18. Sutton M, McNeill S, Helm J, Chao Y (2000) Advances in two-dimensional and three-dimensional computer vision. In: Rastogi P (ed), Photomechanics, topics in applied physics. Springer, Berlin

    Google Scholar 

  19. Wattrisse B, Chrysochoos A, Muracciole J-M, Némoz-Gaillard M (2001) Analysis of strain localization during tensile tests by digital image correlation. Exp Mech 41(1):29–39

    Article  Google Scholar 

  20. Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. Eur J Mech A, Solids 20:169–187

    Article  MATH  Google Scholar 

  21. Wang Y, Cuitiño A (2002) Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation. Int J Solids Struct 39:3777–3796

    Article  Google Scholar 

  22. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69:1695–1711

    Article  Google Scholar 

  23. Laraba-Abbes F, Ienny P, Piques R (2003) A new ’tailor-made’ methodology for the mechanical behaviour analysis of rubber-like materials: I. Kinematics measurements using a digital speckle extensometry. Polymer 44:807–820

    Article  Google Scholar 

  24. Zhang J, Xiong C, Li H, Li M, Wang J, Fang J (2004) Damage and fracture evaluation of granular composite materials by digital image correlation method. Acta Mech Sin 20(4):408–417

    Article  Google Scholar 

  25. Parsons E, Boyce M, Parks D (2004) An experimental investigation of the large-strain tensile behavior of neat and rubber-toughened polycarbonate. Polymer 45:2665–2684

    Article  Google Scholar 

  26. Bergonnier S, Hild F, Roux S (2005) Digital image correlation used for mechanical tests on crimped glass wool samples. J Strain Anal 40(2):185–198

    Article  Google Scholar 

  27. Yoneyama S, Morimoto Y, Takashi M (2006) Automatic evaluation of mixed-mode stress intensity factors utilizing digital image correlation. Strain 42:21–29

    Article  Google Scholar 

  28. Réthoré J, Gravouil A, Morestin F, Combescure A (2005) Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral. Int J Fract 132:65–79

    Article  Google Scholar 

  29. MCIMS (2003) Mesures de champs et identification en mécanique des solides/full field measurement and identification in solid mechanics. http://www.ifma.fr/lami/gdr2519/

  30. Schreier H, Braasch J, Sutton M (2000) Systematic errors in digital image correlation caused by intensity interpolation. Opt Eng 39(11):2915–2921

    Article  Google Scholar 

  31. Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42(2):69–80

    Article  Google Scholar 

  32. Doumalin P (2000) Microextensométrie locale par corrélation d’images numériques; application aux études micromécaniques par microscopie électronique à balayage. PhD thesis, École Polytechnique, Palaiseau, France

  33. Garcia D (2001) Mesure de formes et de champs de déplacements tridimentionnels par stéréo-corrélation d’images. PhD thesis, Institut National Polytechnique de Toulouse, France

  34. Schreier H, Sutton M (2002) Systematic errors in digital image correlation due to undermatched subset shape functions. Exp Mech 43(3):303–311

    Article  Google Scholar 

  35. Knauss WG, Chasiotis I, Huang Y (2003) Mechanical measurements at the micron and nanometer scales. Mech Mater 35(3–6):217–231

    Article  Google Scholar 

  36. Lecompte D, Smits A, Bossuyt S, Sol H, Vantomme J, Van Hemelrijck D, Habraken A (2006) Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44:1132–1145

    Article  Google Scholar 

  37. Réthoré J, Hild F, Roux S (2008) Extended digital image correlation with crack shape optimization. Int J Numer Methosd Eng 73(2):248–272

    Article  MATH  Google Scholar 

  38. Orteu J-J, Garcia D, Robert L, Bugarin F (2006) A speckle-texture image generator. In: Proceedings of the Speckle’06 international conference. Nîmes, France

  39. Perlin K (1985) An image synthesizer. In: Proceedings of the SIGGRAPH’85 conference. San Francisco, California, USA, pp 287–296

  40. Rubin D (2004) A simple autocorrelation algorithm for determining grain size from digital images of sediment. J Sediment Res 74(1):160–165

    Article  Google Scholar 

  41. Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands. Exp Mech 46:789–803

    Article  Google Scholar 

  42. Horn B, Schunk B (1981) Determining optical flow. Artif Intell 17:185–202

    Article  Google Scholar 

  43. Chambon S, Crouzil A (2003) Dense matching using correlation: new measures that are robust near occlusions. In: Proceedings of British machine vision conference (BMVC’2003). East Anglia, Norwich, UK, pp 143–152

    Google Scholar 

  44. Lu H, Ganesan B (2002) Displacement gradient in digital image correlation. In: Proceedings of the 2002 international conference on computational engineering and science

  45. Lu H, Cary P (2000) Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp Mech 40(4):393–400

    Article  Google Scholar 

  46. Aramis 2D software (2008) GOM optical measuring techniques. http://www.gom.com/EN/index.html

  47. Vic-2D software (2008) Correlated Solutions Inc. http://www.correlatedsolutions.com/

  48. Germaneau A, Doumalin P, Dupré J (2007) Full 3D measurement of strain field by scattered light for analysis of structures. Exp Mech 47(4):523–532

    Article  Google Scholar 

  49. Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G (2007) Volumetric digital image correlation applied to X-ray microtomography images form triaxial compression tests on argillaceaous rocks. Strain 43:193–205

    Article  Google Scholar 

Download references

Acknowledgements

The authors and all the participants of this benchmark are grateful to the CNRS for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-J. Orteu.

Additional information

Workgroup “Metrology” of the French CNRS research network 2519 “Mesures de Champs et Identification en Mécanique des Solides/Full-field measurements and identification in solid mechanics”. URL: http://www.ifma.fr/lami/gdr2519

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornert, M., Brémand, F., Doumalin, P. et al. Assessment of Digital Image Correlation Measurement Errors: Methodology and Results. Exp Mech 49, 353–370 (2009). https://doi.org/10.1007/s11340-008-9204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-008-9204-7

Keywords

Navigation