Skip to main content

Advertisement

Log in

A Human-derived Dual MRI/PET Reporter Gene System with High Translational Potential for Cell Tracking

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Reporter gene imaging has been extensively used to longitudinally report on whole-body distribution and viability of transplanted engineered cells. Multi-modal cell tracking can provide complementary information on cell fate. Typical multi-modal reporter gene systems often combine clinical and preclinical modalities. A multi-modal reporter gene system for magnetic resonance imaging (MRI) and positron emission tomography (PET), two clinical modalities, would be advantageous by combining the sensitivity of PET with the high-resolution morphology and non-ionizing nature of MRI.

Procedures

We developed and evaluated a dual MRI/PET reporter gene system composed of two human-derived reporter genes that utilize clinical reporter probes for engineered cell detection. As a proof-of-concept, breast cancer cells were engineered to co-express the human organic anion transporter polypeptide 1B3 (OATP1B3) that uptakes the clinical MRI contrast agent gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA), and the human sodium iodide symporter (NIS) which uptakes the PET tracer, [18F] tetrafluoroborate ([18F] TFB).

Results

T1-weighted MRI results in mice exhibited significantly higher MRI signals in reporter-gene-engineered mammary fat pad tumors versus contralateral naïve tumors (p < 0.05). No differences in contrast enhancement were observed at 5 h after Gd-EOB-DTPA administration using either intravenous or intraperitoneal injection. We also found significantly higher standard uptake values (SUV) in engineered tumors in comparison to the naïve tumors in [18F]TFB PET images (p < 0.001). Intratumoral heterogeneity in signal enhancement was more conspicuous in relatively higher resolution MR images compared to PET images.

Conclusions

Our study demonstrates the ability to noninvasively track cells engineered with our human-derived dual MRI/PET reporter system, enabling a more comprehensive evaluation of transplanted cells. Future work is focused on applying this tool to track therapeutic cells, which may one day enable the broader application of cell tracking within the healthcare system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO (2020) Non-invasive reporter gene imaging of cell therapies, including T cells and stem cells. Mol Ther 28. https://doi.org/10.1016/j.ymthe.2020.03.016

  2. Yang Z, Wang Y, Li Y et al (2014) Options for tracking GFP-Labeled transplanted myoblasts using in vivo fluorescence imaging: implications for tracking stem cell fate. BMC Biotechnol 14:1–8. https://doi.org/10.1186/1472-6750-14-55

    Article  CAS  Google Scholar 

  3. Xu X, Yang Z, Liu Q, Wang Y (2010) In vivo fluorescence imaging of muscle cell regeneration by transplanted EGFP-labeled myoblasts. Mol Ther 18:835–842. https://doi.org/10.1038/mt.2010.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winnard PT, Kluth JB, Raman V (2006) Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia 8:796–806. https://doi.org/10.1593/neo.06304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Conway M, Xu T, Kirkpatrick A et al (2020) Real-time tracking of stem cell viability, proliferation, and differentiation with autonomous bioluminescence imaging. BMC Biol 18:79. https://doi.org/10.1186/s12915-020-00815-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Parkins KM, Dubois VP, Kelly JJ et al (2020) Engineering circulating tumor cells as novel cancer theranostics. Theranostics 10:7925–7937. https://doi.org/10.7150/thno.44259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bar-Shir A, Alon L, Korrer MJ et al (2018) Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magn Reson Med 79:1010–1019. https://doi.org/10.1002/mrm.26708

    Article  CAS  PubMed  Google Scholar 

  8. Kim HS, Woo J, Lee JH et al (2015) In vivo tracking of dendritic cell using MRI reporter gene. Ferritin PLoS One 10:e0125291. https://doi.org/10.1371/journal.pone.0125291

    Article  CAS  PubMed  Google Scholar 

  9. Nyström NN, Hamilton AM, Xia W et al (2019) Longitudinal visualization of viable cancer cell intratumoral distribution in mouse models using Oatp1a1-enhanced magnetic resonance imaging. Invest Radiol 54:302–311. https://doi.org/10.1097/RLI.0000000000000542

    Article  PubMed  Google Scholar 

  10. Bourdeau RW, Lee-Gosselin A, Lakshmanan A et al (2018) Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553:86–90. https://doi.org/10.1038/nature25021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farhadi A, Ho GH, Sawyer DP, et al (2019) Ultrasound imaging of gene expression in mammalian cells. Science 365(80):1469–1475. https://doi.org/10.1126/science.aax4804

  12. Nyström NN, Yip LCM, Carson JJL et al (2019) Development of a human photoacoustic imaging reporter gene using the clinical dye indocyanine green. Radiol Imaging Cancer 1:e190035. https://doi.org/10.1148/rycan.2019190035

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yaghoubi SS, Campbell DO, Radu CG, Czernin J (2012) Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Theranostics 2:374–391

    Article  CAS  Google Scholar 

  14. Keu KV, Witney TH, Yaghoubi S, et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aag2196

  15. Gschweng EH, McCracken MN, Kaufman ML et al (2014) HSV-sr39TK positron emission tomography and suicide gene elimination of human hematopoietic stem cells and their progeny in humanized mice. Cancer Res 74:5173–5183. https://doi.org/10.1158/0008-5472.CAN-14-0376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yaghoubi SS, Jensen MC, Satyamurthy N et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18 F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58. https://doi.org/10.1038/ncponc1278

    Article  CAS  PubMed  Google Scholar 

  17. Pomper MG, Hammond H, Yu X et al (2009) (2008) Serial imaging of human embryonic stem-cell engraftment and teratoma formation in live mouse models. Cell Res 193(19):370–379. https://doi.org/10.1038/cr.2008.329

    Article  CAS  Google Scholar 

  18. Y W, WY Z, S H, et al (2012) Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circ Res 111:1494–1503. https://doi.org/10.1161/CIRCRESAHA.112.274969

  19. Z L, F W, J D, et al (2007) Imaging of mesenchymal stem cell transplant by bioluminescence and PET. J Nucl Med 48:2011–2020. https://doi.org/10.2967/JNUMED.107.043166

  20. E W, B H, L O, et al (2017) Molecular imaging of human embryonic stem cells stably expressing human PET reporter genes after zinc finger nuclease-mediated genome editing. J Nucl Med 58:1659–1665. https://doi.org/10.2967/JNUMED.117.189779

  21. H T, X L, H G, et al (2012) Radio-deoxynucleoside analogs used for imaging tk expression in a transgenic mouse model of induced hepatocellular carcinoma. Theranostics 2:597–606. https://doi.org/10.7150/THNO.3371

  22. Lin KM, Hsu C-H, Chang W-SW, et al (2008) Human breast tumor cells express multimodal imaging reporter genes. Mol Imaging Biol 2008 105 10:253–263. https://doi.org/10.1007/S11307-008-0147-2

  23. Yan X, Ray P, Paulmurugan R et al (2013) A transgenic tri-modality reporter mouse. PLoS ONE 8:e73580. https://doi.org/10.1371/JOURNAL.PONE.0073580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xing Y, Zhao J, Conti PS, Chen K (2014) Radiolabeled nanoparticles for multimodality tumor imaging. Theranostics 4:290–306

    Article  Google Scholar 

  25. Zhou Y, Yuan J, Li Z et al (2015) Genetic polymorphisms and function of the organic anion-transporting polypeptide 1A2 and its clinical relevance in drug disposition. Pharmacology 95:201–208. https://doi.org/10.1159/000381313

    Article  CAS  PubMed  Google Scholar 

  26. Jacquemin E, Hagenbuch B, Stieger B et al (1994) Dual-modality gene reporter for in vivo imaging. Proc Natl Acad Sci U S A 91:133–137. https://doi.org/10.1073/pnas.91.1.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jacquemin E, Hagenbuch B, Stieger B et al (2014) Expression cloning of a rat liver Na(+)-independent organic anion transporter. PNAS 91:133–137. https://doi.org/10.1073/pnas.91.1.133

    Article  Google Scholar 

  28. Leonhardt M, Keiser M, Oswald S et al (2010) Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: role of human organic anion transporters. Drug Metab Dispos 38:1024–1028. https://doi.org/10.1124/dmd.110.032862

    Article  CAS  PubMed  Google Scholar 

  29. Wu M-R, Liu H-M, Lu C-W et al (2018) Organic anion-transporting polypeptide 1B3 as a dual reporter gene for fluorescence and magnetic resonance imaging. FASEB J 32:1705–1715. https://doi.org/10.1096/fj.201700767R

    Article  CAS  PubMed  Google Scholar 

  30. Baek SE, Ul-Haq A, Kim DH et al (2020) Human organic anion transporting polypeptide 1B3 applied as an MRI-based reporter gene. Korean J Radiol 21:726–735. https://doi.org/10.3348/kjr.2019.0903

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sharif-Paghaleh E, Sunassee K, Tavaré R, et al (2011) In vivo SPECT reporter gene imaging of regulatory T cells. PLoS One 6. https://doi.org/10.1371/journal.pone.0025857

  32. Punzón I, Mauduit D, Holvoet B et al (2020) In vivo myoblasts tracking using the sodium iodide symporter gene expression in dogs. Mol Ther - Methods Clin Dev 17:317–327. https://doi.org/10.1016/j.omtm.2019.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Volpe A, Man F, Lim L, et al (2018) Radionuclide-fluorescence reporter gene imaging to track tumor progression in rodent tumor models. J Vis Exp. https://doi.org/10.3791/57088

  34. Lee SB, Lee HW, Lee H, et al (2017) Tracking dendritic cell migration into lymph nodes by using a novel PET probe 18F-tetrafluoroborate for sodium/iodide symporter. EJNMMI Res 7. https://doi.org/10.1186/s13550-017-0280-5

  35. Ahn BC (2012) Sodium iodide symporter for nuclear molecular imaging and gene therapy: from bedside to bench and back. Theranostics 2:392–402

    Article  CAS  Google Scholar 

  36. Penheiter AR, Russell SJ, Carlson SK (2012) The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 12:33. https://doi.org/10.2174/156652312799789235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willhauck MJ, Sharif Samani B-R, Gildehaus F-J et al (2007) Application of 188Rhenium as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 92:4451–4458. https://doi.org/10.1210/jc.2007-0402

    Article  CAS  PubMed  Google Scholar 

  38. Smit JWA, Schröder-Van Der Elst JP, Karperien M et al (2002) Iodide kinetics and experimental 131I therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line. J Clin Endocrinol Metab 87:1247–1253. https://doi.org/10.1210/jcem.87.3.8307

    Article  CAS  PubMed  Google Scholar 

  39. Jiang H, DeGrado TR (2018) [18F]Tetrafluoroborate ([18F]TFB) and its analogs for PET imaging of the sodium/iodide symporter. Theranostics 8:3918–3931. https://doi.org/10.7150/thno.24997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Weeks AJ, Jauregui-Osoro M, Cleij M et al (2011) Evaluation of [18F]-tetrafluoroborate as a potential PET imaging agent for the human sodium/iodide symporter in a new colon carcinoma cell line, HCT116, expressing hNIS. Nucl Med Commun 32:98–105. https://doi.org/10.1097/MNM.0b013e3283419540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang H, Bansal A, Pandey MK et al (2016) Synthesis of 18F-Tetrafluoroborate via radiofluorination of boron trifluoride and evaluation in a murine C6-Glioma tumor model. J Nucl Med 57:1454–1459. https://doi.org/10.2967/jnumed.115.170894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Diocou S, Volpe A, Jauregui-Osoro M et al (2017) [18F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Sci Rep 7:946. https://doi.org/10.1038/s41598-017-01044-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu Z, Chen O, Wall JBJ et al (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193. https://doi.org/10.1038/s41598-017-02460-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Wang F, Wang R et al (2015) 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori. Sci Rep 5:16273. https://doi.org/10.1038/srep16273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jing Ye, Liu X, Xu Y, Lü G (2006) Targeted magnetic resonance imaging with intraperitoneal and intravenous streptavidin (SA)-DTPA-Gd: a comparative study in tumor-bearing nude mice. https://pubmed.ncbi.nlm.nih.gov/16503514/. Accessed 15 dec 2020

  46. Moreno H, Hua F, Brown T, Small S (2006) Longitudinal mapping of mouse cerebral blood volume with MRI. NMR Biomed 19:535–543. https://doi.org/10.1002/nbm.1022

    Article  PubMed  Google Scholar 

  47. Perrin J, Capitao M, Mougin-Degraef M et al (2020) Cell Tracking in Cancer Immunotherapy. Front Med 7:34

    Article  Google Scholar 

  48. C B, ME F, EH W, SR R (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptively transferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood 107:2294–2302. https://doi.org/10.1182/BLOOD-2005-08-3503

  49. Fruhwirth GO, Diocou S, Blower PJ et al (2014) A whole-body dual-modality radionuclide optical strategy for preclinical imaging of metastasis and heterogeneous treatment response in different microenvironments. J Nucl Med 55:686–694. https://doi.org/10.2967/jnumed.113.127480

    Article  CAS  PubMed  Google Scholar 

  50. Stammes MA, Knol-Blankevoort VT, Cruz LJ et al (2016) (2016) Pre-clinical evaluation of a cyanine-based SPECT probe for multimodal tumor necrosis imaging. Mol Imaging Biol 186(18):905–915. https://doi.org/10.1007/S11307-016-0972-7

    Article  Google Scholar 

  51. Stammes MA, Maeda A, Bu J, et al (2016) The necrosis-avid small molecule HQ4-DTPA as a multimodal imaging agent for monitoring radiation therapy-induced tumor cell death. Front Oncol 0:221. https://doi.org/10.3389/FONC.2016.00221

  52. Pool SE, Hagen TLM ten, Koelewijn S, et al (2012) Multimodality imaging of somatostatin receptor–positive tumors with nuclear and bioluminescence imaging: 11:27–32. https://doi.org/10.2310/7290.2011.00024

  53. Bhattacharya A, Kochhar R, Sharma S et al (2014) PET/CT with 18F-FDG–labeled autologous leukocytes for the diagnosis of infected fluid collections in acute pancreatitis. J Nucl Med 55:1267–1272. https://doi.org/10.2967/JNUMED.114.137232

    Article  CAS  PubMed  Google Scholar 

  54. Hofmann M, Wollert KC, Meyer GP et al (2005) Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111:2198–2202. https://doi.org/10.1161/01.CIR.0000163546.27639.AA

    Article  PubMed  Google Scholar 

  55. Guedan S, Ruella M, June CH (2018) Emerging cellular therapies for cancer. 101146/annurev-immunol-042718–041407 37:145–171. https://doi.org/10.1146/ANNUREV-IMMUNOL-042718-041407

  56. R G, G O, MT S, et al (2015) Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 6:. https://doi.org/10.3389/FPHAR.2015.00095

  57. Dubois VP, Zotova D, Parkins KM et al (2018) Safe harbor targeted CRISPR-Cas9 tools for molecular-genetic imaging of cells in living subjects. Cris J 1:440–449. https://doi.org/10.1089/crispr.2018.0030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ontario Institute for Cancer Research (IA-028) National Institutes of Health (1UH2EB028907-01), Translational Breast Cancer Research Unit, and the National Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception or design of the work or the acquisition, analysis, or interpretation of data for the work. All authors contributed to drafting the work or revising it critically for important intellectual content. All authors approved the final version of the manuscript to be published. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Nourhan Shalaby.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10982 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, N., Kelly, J., Martinez, F. et al. A Human-derived Dual MRI/PET Reporter Gene System with High Translational Potential for Cell Tracking. Mol Imaging Biol 24, 341–351 (2022). https://doi.org/10.1007/s11307-021-01697-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01697-8

Keywords

Navigation