Skip to main content

Advertisement

Log in

Longitudinal FRET Imaging of Glucose and Lactate Dynamics and Response to Therapy in Breast Cancer Cells

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

A Correction to this article was published on 02 November 2021

This article has been updated

Abstract

Purpose

The reprogramming of cellular metabolism is a hallmark of cancer. The ability to noninvasively assay glucose and lactate concentrations in cancer cells would improve our understanding of the dynamic changes in metabolic activity accompanying tumor initiation, progression, and response to therapy. Unfortunately, common approaches for measuring these nutrient levels are invasive or interrupt cell growth. This study transfected FRET reporters quantifying glucose and lactate concentration into breast cancer cell lines to study nutrient dynamics and response to therapy.

Procedures

Two FRET reporters, one assaying glucose concentration and one assaying lactate concentration, were stably transfected into the MDA-MB-231 breast cancer cell line. Correlation between FRET measurements and ligand concentration were measured using a confocal microscope and a cell imaging plate reader. Longitudinal changes in glucose and lactate concentration were measured in response to treatment with CoCl2, cytochalasin B, and phloretin which, respectively, induce hypoxia, block glucose uptake, and block glucose and lactate transport.

Results

The FRET ratio from the glucose and lactate reporters increased with increasing concentration of the corresponding ligand (p < 0.005 and p < 0.05, respectively). The FRET ratio from both reporters was found to decrease over time for high initial concentrations of the ligand (p < 0.01). Significant differences in the FRET ratio corresponding to metabolic inhibition were found when cells were treated with glucose/lactate transporter inhibitors.

Conclusions

FRET reporters can track intracellular glucose and lactate dynamics in cancer cells, providing insight into tumor metabolism and response to therapy over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Change history

References

  1. Forster J, Harriss-Phillips W, Douglass M, Bezak E (2017) A review of the development of tumor vasculature and its effects on the tumor microenvironment. HP Volume 5:21–32. https://doi.org/10.2147/HP.S133231

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Warburg O (1956) On the Origin of Cancer Cells. Science 123:309–314

    Article  CAS  Google Scholar 

  4. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033. https://doi.org/10.1126/science.1160809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85

    Article  CAS  Google Scholar 

  6. Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292:504–507. https://doi.org/10.1126/science.1058079

    Article  CAS  PubMed  Google Scholar 

  7. Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma?. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1807:552–561. https://doi.org/10.1016/j.bbabio.2010.10.012

  8. Gatenby RA, Gillies RJ (2007) Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol 39:1358–1366. https://doi.org/10.1016/j.biocel.2007.03.021

    Article  CAS  PubMed  Google Scholar 

  9. Gatenby RA, Smallbone K, Maini PK et al (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br J Cancer 97:646

    Article  CAS  Google Scholar 

  10. Swietach P, Vaughan-Jones RD, Harris AL, Hulikova A (2014) The chemistry, physiology and pathology of pH in cancer. Phil Trans R Soc B 369:20130099. https://doi.org/10.1098/rstb.2013.0099

    Article  PubMed  PubMed Central  Google Scholar 

  11. Corbet C, Feron O (2017) Tumour acidosis: from the passenger to the driver’s seat. Nat Rev Cancer 17:577–593. https://doi.org/10.1038/nrc.2017.77

    Article  CAS  PubMed  Google Scholar 

  12. Som P, Atkins HL, Bandoypadhyay D et al (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21:670–675

    CAS  PubMed  Google Scholar 

  13. Zou C, Wang Y, Shen Z (2005) 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J Biochem Biophys Methods 64:207–215. https://doi.org/10.1016/j.jbbm.2005.08.001

    Article  CAS  PubMed  Google Scholar 

  14. Prodromidis MI, Karayannis MI (2002) Enzyme based amperometric biosensors for food analysis. 21

  15. Rassaei L, Olthuis W, Tsujimura S et al (2014) Lactate biosensors: current status and outlook. Anal Bioanal Chem 406:123–137. https://doi.org/10.1007/s00216-013-7307-1

    Article  CAS  PubMed  Google Scholar 

  16. Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochimica et Biophysica Acta (BBA) - Biomembranes 1778:1091–1099. https://doi.org/10.1016/j.bbamem.2007.11.015

  17. Martın AS, Barros LF (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS ONE 8:11

    Article  Google Scholar 

  18. Bittner CX (2010) High resolution measurement of the glycolytic rate. Front Neuroenerg 2. https://doi.org/10.3389/fnene.2010.00026

  19. Sotelo-Hitschfeld T, Niemeyer MI, Machler P et al (2015) Channel-mediated lactate release by K+-stimulated astrocytes. J Neurosci 35:4168–4178. https://doi.org/10.1523/JNEUROSCI.5036-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasel P, Dando O, Jiwaji Z et al (2017) Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8:15132. https://doi.org/10.1038/ncomms15132

    Article  PubMed  PubMed Central  Google Scholar 

  21. Díaz-García CM, Mongeon R, Lahmann C et al (2017) Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab 26:361-374.e4. https://doi.org/10.1016/j.cmet.2017.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vardjan N, Chowdhury HH, Horvat A et al (2018) Enhancement of astroglial aerobic glycolysis by extracellular lactate-mediated increase in cAMP. Front Mol Neurosci 11:148. https://doi.org/10.3389/fnmol.2018.00148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jamali S, Klier M, Ames S et al (2015) Hypoxia-induced carbonic anhydrase IX facilitates lactate flux in human breast cancer cells by non-catalytic function. Sci Rep 5:13605. https://doi.org/10.1038/srep13605

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ames S, Pastorekova S, Becker HM (2018) The proteoglycan-like domain of carbonic anhydrase IX mediates non-catalytic facilitation of lactate transport in cancer cells. Oncotarget 9:27940–27957. https://doi.org/10.18632/oncotarget.25371

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ames S, Andring JT, McKenna R, Becker HM (2020) CAIX forms a transport metabolon with monocarboxylate transporters in human breast cancer cells. Oncogene 39:1710–1723. https://doi.org/10.1038/s41388-019-1098-6

    Article  CAS  PubMed  Google Scholar 

  26. Tobar N, Porras O, Smith PC et al (2017) Modulation of mammary stromal cell lactate dynamics by ambient glucose and epithelial factors: glucose modulates lactate transfer from stroma to epithelia. J Cell Physiol 232:136–144. https://doi.org/10.1002/jcp.25398

    Article  CAS  PubMed  Google Scholar 

  27. Ponce I, Garrido N, Tobar N, et al (2021) Matrix stiffness modulates metabolic interaction between human stromal and breast cancer cells to stimulate epithelial motility. In Review

  28. Lucantoni F, Dussmann H, Prehn JHM (2018) Metabolic targeting of breast cancer cells with the 2-deoxy-D-glucose and the mitochondrial bioenergetics inhibitor MDIVI-1. Front Cell Dev Biol 6:113. https://doi.org/10.3389/fcell.2018.00113

    Article  PubMed  PubMed Central  Google Scholar 

  29. Contreras-Baeza Y, Ceballo S, Arce-Molina R et al (2019) MitoToxy assay: a novel cell-based method for the assessment of metabolic toxicity in a multiwell plate format using a lactate FRET nanosensor. Laconic PLoS ONE 14:e0224527. https://doi.org/10.1371/journal.pone.0224527

    Article  CAS  PubMed  Google Scholar 

  30. Kondo H, Ratcliffe CDH, Hooper S et al (2021) Single-cell resolved imaging reveals intra-tumor heterogeneity in glycolysis, transitions between metabolic states, and their regulatory mechanisms. Cell Rep 34:108750. https://doi.org/10.1016/j.celrep.2021.108750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dima AA, Elliott JT, Filliben JJ et al (2011) Comparison of segmentation algorithms for fluorescence microscopy images of cells: comparison of segmentation algorithms. Cytometry 79A:545–559. https://doi.org/10.1002/cyto.a.21079

    Article  Google Scholar 

  32. Miller J (1991) Short report: reaction time analysis with outlier exclusion: bias varies with sample size. The Quarterly Journal of Experimental Psychology Section A 43:907–912. https://doi.org/10.1080/14640749108400962

    Article  CAS  Google Scholar 

  33. Lee HR, Leslie F, Azarin SM (2018) A facile in vitro platform to study cancer cell dormancy under hypoxic microenvironments using CoCl2. J Biol Eng 12:12. https://doi.org/10.1186/s13036-018-0106-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Macheda ML, Rogers S, Best JD (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol 202:654–662. https://doi.org/10.1002/jcp.20166

    Article  CAS  PubMed  Google Scholar 

  35. Manel N, Kim FJ, Kinet S et al (2003) The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115:449–459. https://doi.org/10.1016/S0092-8674(03)00881-X

    Article  CAS  PubMed  Google Scholar 

  36. Saab AS, Tzvetavona ID, Trevisiol A et al (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132. https://doi.org/10.1016/j.neuron.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  37. Hu X, Chao M, Wu H (2017) Central role of lactate and proton in cancer cell resistance to glucose deprivation and its clinical translation. Sig Transduct Target Ther 2:16047. https://doi.org/10.1038/sigtrans.2016.47

    Article  Google Scholar 

  38. Piasentin N, Milotti E, Chignola R (2020) The control of acidity in tumor cells: a biophysical model. Sci Rep 10:13613. https://doi.org/10.1038/s41598-020-70396-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Granchi C, Minutolo F (2012) Anticancer agents that counteract tumor glycolysis. ChemMedChem 7:1318–1350. https://doi.org/10.1002/cmdc.201200176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen YI, Chang YJ, Liao SC et al (2020) Deep learning enables rapid and robust analysis of fluorescence lifetime imaging in photon-starved conditions. bioRxiv

  41. Brown RS, Wahl RL (1993) Overexpression of glut-1 glucose transporter in human breast cancer an immunohistochemical study. Cancer 72:2979–2985. https://doi.org/10.1002/1097-0142(19931115)72:10%3c2979::AID-CNCR2820721020%3e3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  42. Gallagher SM, Castorino JJ, Wang D, Philp NJ (2007) Monocarboxylate transporter 4 regulates maturation and trafficking of CD147 to the plasma membrane in the metastatic breast cancer cell line MDA-MB-231. Can Res 67:4182–4189. https://doi.org/10.1158/0008-5472.CAN-06-3184

    Article  CAS  Google Scholar 

  43. Mächler P, Wyss MT, Elsayed M et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 23:94–102. https://doi.org/10.1016/j.cmet.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  44. Betolngar D-B, Erard M, Pasquier H et al (2015) pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins. Anal Bioanal Chem 407:4183–4193. https://doi.org/10.1007/s00216-015-8636-z

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by CPRIT for funding through RR160005 and RR160093, and the National Institutes of Health for funding through NCI U01CA174706, U01CA142565, and R01CA186193. T.E.Y is a CPRIT Scholar in Cancer Research. H.-C.Y. acknowledges the support from the Welch Foundation (F-1833), National Science Foundation (2029266) and National Institutes of Health (EY033106).

Author information

Authors and Affiliations

Authors

Contributions

JY, TEY, JV, and HY contributed to the study design, analysis, data interpretation, and manuscript draft. JY, TD, AKS, YC, and MJB contributed to data acquisition. All authors critically reviewed and approved the final version of the work.

Corresponding author

Correspondence to John Virostko.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Davis, T., Kazerouni, A.S. et al. Longitudinal FRET Imaging of Glucose and Lactate Dynamics and Response to Therapy in Breast Cancer Cells. Mol Imaging Biol 24, 144–155 (2022). https://doi.org/10.1007/s11307-021-01639-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-021-01639-4

Key words

Navigation