Skip to main content

Advertisement

Log in

Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Context

Cortisol, a glucocorticoid steroid stress hormone, is primarily responsible for stimulating gluconeogenesis in the liver and promoting adipocyte differentiation and maturation. Prolonged excess cortisol leads to visceral adiposity, insulin resistance, hyperglycemia, memory dysfunction, cognitive impairment, and more severe Alzheimer’s disease phenotypes. The intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyzes the conversion of inactive cortisone to active cortisol; yet the amount of 11β-HSD1 in the brain has not been quantified directly in vivo.

Objective

We analyzed positron emission tomography (PET) scans with an 11β-HSD1 inhibitor radioligand in twenty-eight individuals (23 M/5F): 10 lean, 13 overweight, and 5 obese individuals. Each individual underwent PET imaging on the high-resolution research tomograph PET scanner after injection of 11C-AS2471907 (n = 17) or 18F-AS2471907 (n = 11). Injected activity and mass doses were 246 ± 130 MBq and 0.036 ± 0.039 μg, respectively, for 11C-AS2471907, and 92 ± 15 MBq and 0.001 ± 0.001 μg for 18F-AS2471907. Correlations of mean whole brain and regional distribution volume (VT) with body mass index (BMI) and age were performed with a linear regression model.

Results

Significant correlations of whole brain mean VT with BMI and age (VT = 15.23–0.63 × BMI + 0.27 × Age, p = 0.001) were revealed. Age-adjusted mean whole brain VT values were significantly lower in obese individuals. Post hoc region specific analyses revealed significantly reduced mean VT values in the thalamus (lean vs. overweight and lean vs. obese individuals). Caudate, hypothalamus, parietal lobe, and putamen also showed lower VT value in obese vs. lean individuals. A significant age-associated increase of 2.7 mL/cm3 per decade was seen in BMI-corrected mean whole brain VT values.

Conclusions

In vivo PET imaging demonstrated, for the first time, correlation of higher BMI (obesity) with lower levels of the enzyme 11β-HSD1 in the brain and correlation of increased 11β-HSD1 levels in the brain with advancing age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Centers for Disease Control and Prevention. Overweight and Obesity. https://www.cdc.gov/obesity/index.html. Accessed 20 Dec 2019

  2. Mason BL, Pariante CM, Jamel S, Thomas SA (2010) Central nervous system (CNS) delivery of glucocorticoids is fine-tuned by saturable transporters at the blood-CNS barriers and nonbarrier regions. Endocrinology 151:5294–5305

    Article  CAS  Google Scholar 

  3. Chapman K, Holmes M, Seckl J (2013) 11 -Hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev 93:1139–1206

    Article  CAS  Google Scholar 

  4. Chanson P, Salenave S (2010) Metabolic syndrome in Cushing’s syndrome. Neuroendocrinology 92:96–101

    Article  CAS  Google Scholar 

  5. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    Article  CAS  Google Scholar 

  6. Holmes MC, Seckl JR (2006) The role of 11β-hydroxysteroid dehydrogenases in the brain. Mol Cell Endocrinol 248:9–14

    Article  CAS  Google Scholar 

  7. Wyrwoll CS, Holmes MC, Seckl JR (2011) 11β-Hydroxysteroid dehydrogenases and the brain: from zero to hero, a decade of progress. Front Neuroendocrinol 32:265–286

    Article  CAS  Google Scholar 

  8. Yarchoan M, Arnold SE (2014) Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes 63:2253–2261

    Article  Google Scholar 

  9. Sandeep TC, Yau JLW, MacLullich AMJ et al (2004) 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc Natl Acad Sci U S A 101:6734–6739

    Article  CAS  Google Scholar 

  10. MacLullich AMJ, Ferguson KJ, Reid LM et al (2012) 11β-Hydroxysteroid dehydrogenase type 1, brain atrophy and cognitive decline. Neurobiol Aging 33:207.e1–207.e8

    Article  CAS  Google Scholar 

  11. Alford S, Patel D, Perakakis N, Mantzoros CS (2018) Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev 19:269–280

    Article  CAS  Google Scholar 

  12. Meaney MJ, O’Donnell D, Rowe W et al (1995) Individual differences in hypothalamic-pituitary-adrenal activity in later life and hippocampal aging. Exp Gerontol 30:229–251

    Article  CAS  Google Scholar 

  13. Csernansky JG, Dong H, Fagan AM et al (2006) Plasma cortisol and progression of dementia in subjects with alzheimer-type dementia. Am J Psychiatry 163:2164–2169

    Article  Google Scholar 

  14. Yau JLW, Seckl JR (2012) Local amplification of glucocorticoids in the aging brain and impaired spatial memory. 4:1–15

  15. Stewart PM, Boulton A, Kumar S et al (1999) Cortisol metabolism in human obesity: impaired cortisone-->cortisol conversion in subjects with central adiposity. J Clin Endocrinol Metab 84:1022–1027

    CAS  PubMed  Google Scholar 

  16. Rask E (2001) Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab 86:1418–1421

    Article  CAS  Google Scholar 

  17. Morgan SA, McCabe EL, Gathercole LL et al (2014) 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A 111:E2482–E2491

    Article  CAS  Google Scholar 

  18. Holmes MC, Carter RN, Noble J, et al (2010) 11β-Hydroxysteroid dehydrogenase type 1 expression is increased in the aged mouse Hippocampus and parietal cortex and causes memory impairments. 30:6916–6920

  19. Andrew R, Smith K, Jones GC, Walker BR (2002) Distinguishing the activities of 11β-Hydroxysteroid. J Clin Endocrinol Metab 87:277–285

    CAS  PubMed  Google Scholar 

  20. Iwashita A, Fushiki H, Fujita Y et al (2016) Discovery of a novel radioligand [11C] AS2471907 for PET imaging of the brain 11β-HSD1. J Nucl Med 57:1050

    Google Scholar 

  21. Gallezot J-D, Nabulsi N, Henry S et al (2019) Imaging the enzyme 11β-hydroxysteroid dehydrogenase type 1 with positron emission tomography: evaluation of the novel radiotracer 11C-AS2471907 in human brain. J Nucl Med 60:1140–1146

    Article  CAS  Google Scholar 

  22. Baum E, Zhang W, Li S, Cai Z, Holden D, Huang Y (2019) A novel 18F-labeled radioligand for positron emission tomography imaging of 11β-hydroxysteroid dehydrogenase (11β-HSD1): synthesis and preliminary evaluation in nonhuman primates. ACS Chem Neurosci 10:2450–2458

    Article  CAS  Google Scholar 

  23. Bhatt S, Nabulsi NB, Li S, et al (2019) First in-human PET study and kinetic evaluation of [18 F]AS2471907 for imaging 11β-hydroxysteroid dehydrogenase type 1. J Cereb Blood Flow Metab 271678X19838633

  24. Naganawa M, Waterhouse RN, Nabulsi N, Lin SF, Labaree D, Ropchan J, Tarabar S, DeMartinis N, Ogden A, Banerjee A, Huang Y, Carson RE (2016) First-in-human assessment of the novel PDE2A PET radiotracer 18F-PF-05270430. J Nucl Med 57:1388–1395

    Article  CAS  Google Scholar 

  25. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289

    Article  CAS  Google Scholar 

  26. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  CAS  Google Scholar 

  27. Ichise M, Toyama H, Innis RB, Carson RE (2002) Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab 22:1271–1281

    Article  Google Scholar 

  28. Rask E, Walker BR, Söderberg S, Livingstone DE, Eliasson M, Johnson O, Andrew R, Olsson T (2002) Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab 87:3330–3336

    CAS  PubMed  Google Scholar 

  29. Valsamakis G, Anwar A, Tomlinson JW et al (2004) 11Beta-Hydroxysteroid dehydrogenase type 1 activity in lean and obese males with type 2 diabetes mellitus. J Clin Endocrinol Metab 89:4755–4761

    Article  CAS  Google Scholar 

  30. Ahmed A, Rabbitt E, Brady T et al (2012) A switch in hepatic cortisol metabolism across the Spectrum of non alcoholic fatty liver disease. PLoS One 7:e29531

    Article  CAS  Google Scholar 

  31. Caughey S, Harris AP, Seckl JR et al (2017) Forebrain-specific transgene rescue of 11β-HSD1 associates with impaired spatial memory and reduced hippocampal brain-derived neurotrophic factor mRNA levels in aged 11B-HSD1 deficient mice. J Neuroendocrinol 29:1–9

    Article  Google Scholar 

  32. Sooy K, Webster SP, Noble J et al (2010) Partial deficiency or short-term inhibition of 11B-dydroxysteroid dehydrogenase type 1 improves cognitive function in aging mice. J Neurosci 30:13867–13872

    Article  CAS  Google Scholar 

  33. Yau JLW, Mcnair KM, Noble J et al (2007) Enhanced hippocampal long-term potentiation and spatial learning in aged 11β-hydroxysteroid dehydrogenase type 1 knock-out mice. J Neurosci 27:10487–10496

    Article  CAS  Google Scholar 

  34. Sooy K, Noble J, Mcbride A et al (2015) Cognitive and disease-modifying effects of 11β-hydroxysteroid dehydrogenase type 1 inhibition in male Tg2576 mice, a model of Alzheimer’s disease. Endocrinology 156:4592–4603

    Article  CAS  Google Scholar 

  35. Yau JL, Noble J, Kenyon CJ et al (2001) Lack of tissue glucocorticoid reactivation in 11beta -hydroxysteroid dehydrogenase type 1 knockout mice ameliorates age-related learning impairments. Proc Natl Acad Sci U S A 98:4716–4721

    Article  CAS  Google Scholar 

  36. Lupien S, Lecours AR, Lussier I, Schwartz G, Nair NP, Meaney MJ (1994) Basal cortisol levels and cognitive deficits in human aging. J Neurosci 14:2893–2903

    Article  CAS  Google Scholar 

  37. Huang CW, Lui CC, Chang WN, Lu CH, Wang YL, Chang CC (2009) Elevated basal cortisol level predicts lower hippocampal volume and cognitive decline in Alzheimer’s disease. J Clin Neurosci 16:1283–1286

    Article  CAS  Google Scholar 

  38. Beaufrère B, Morio B (2000) Fat and protein redistribution with aging: metabolic considerations. Eur J Clin Nutr 54:S48–S53

    Article  Google Scholar 

  39. Balachandran A, Guan H, Sellan M, van Uum S, Yang K (2008) Insulin and dexamethasone dynamically regulate adipocyte 11β-hydroxysteroid dehydrogenase type 1. Endocrinology 149:4069–4079

    Article  CAS  Google Scholar 

  40. Van Cauter E, Leproult R, Kupfer D (2014) Effects of gender and age on the levels rhythmicity. J Clin Endocrinol Metab 81:2468–2473

    Google Scholar 

  41. Hamer M, Batty GD (2019) Association of body mass index and waist-to-hip ratio with brain structure: UK biobank study. Neurology 92:e594–e600

    Article  Google Scholar 

Download references

Funding

This work was funded by a NARSAD Independent Investigator Award (KC), the VA National Center for PTSD (KC), NIH DRC P30DK045735 (AMJ), and NIH NIDDK K01DK118005 (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Bini.

Ethics declarations

Conflict of Interest

AMJ consults for Novo Nordisk, Medtronic Diabetes, and Rhythm Pharmaceuticals. All other authors have nothing to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bini, J., Bhatt, S., Hillmer, A.T. et al. Body Mass Index and Age Effects on Brain 11β-Hydroxysteroid Dehydrogenase Type 1: a Positron Emission Tomography Study. Mol Imaging Biol 22, 1124–1131 (2020). https://doi.org/10.1007/s11307-020-01490-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01490-z

Key words

Navigation