Skip to main content

Advertisement

Log in

Imaging and Characterization of Macrophage Distribution in Mouse Models of Human Prostate Cancer

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Prostate carcinoma consists of tumor epithelium and malignant stroma. Until recently, diagnostic and therapeutic efforts have focused exclusively on targeting characteristics of the tumor epithelium, ignoring opportunities to target inflammatory infiltrate and extracellular matrix components. Prostate tumors are rich in tumor-associated macrophages (TAMs), which can be either of the cytotoxic M1 or protumorigenic M2 phenotype. We have quantified the proportion of each in seven common human prostate tumor lines grown subcutaneously in athymic nude mice and have imaged macrophage densities in vivo in xenografts derived from these lines.

Procedures

A panel of seven human prostate cancer xenografts was generated in intact male athymic nude mice reflecting variable expression of the androgen receptor (AR) and prostate-specific membrane antigen (PSMA). Mice were imaged ex vivo using near-infrared fluorescence (NIRF) imaging for PSMA expression and total macrophage densities to enable direct comparison between the two. Tumors were harvested for sectioning and additional staining to delineate M1 and M2 phenotype along with vascular density.

Results

Macrophage polarization analysis of sections revealed that all xenografts were > 94% M2 phenotype, and the few M1-polarized macrophages present were confined to the periphery. Xenografts displaying the fastest growth were associated with the highest densities of macrophages while the slowest growing tumors were characterized by focal, tumor-infiltrating macrophage densities. Xenograft sections displayed a strong positive spatial relationship between macrophages, vasculature, and PSMA expression.

Conclusions

Prostate TAM disposition can be imaged ex vivo and is associated with growth characteristics of a variety of tumor subtypes regardless of PSMA or AR expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  2. Hugosson J, Carlsson S, Aus G, Bergdahl S, Khatami A, Lodding P, Pihl CG, Stranne J, Holmberg E, Lilja H (2010) Mortality results from the Goteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 11:725–732

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schroder FH, Hugosson J, Roobol MJ et al (2012) Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 366:981–990

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jemal A, Fedewa SA, Ma J, Siegel R, Lin CC, Brawley O, Ward EM (2015) Prostate cancer incidence and PSA testing patterns in relation to USPSTF screening recommendations. JAMA 314:2054–2061

    Article  CAS  PubMed  Google Scholar 

  5. Harris R, Lohr KN (2002) Screening for prostate cancer: an update of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 137:917–929

    Article  PubMed  Google Scholar 

  6. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, Kwiatkowski M, Lujan M, Lilja H, Zappa M, Denis LJ, Recker F, Páez A, Määttänen L, Bangma CH, Aus G, Carlsson S, Villers A, Rebillard X, van der Kwast T, Kujala PM, Blijenberg BG, Stenman UH, Huber A, Taari K, Hakama M, Moss SM, de Koning HJ, Auvinen A, ERSPC Investigators (2012) Prostate-cancer mortality at 11 years of follow-up. New Engl J Med 366:981–990

    Article  PubMed  Google Scholar 

  7. Krušlin B, Ulamec M, Tomas D (2015) Prostate cancer stroma: an important factor in cancer growth and progression. Bosnian J Basic Med Sci 15:1–8

    Google Scholar 

  8. Packer JR, Maitland NJ (2016) The molecular and cellular origin of human prostate cancer. BBA - Mol Cell Res 1863:1238–1260

    CAS  Google Scholar 

  9. Bouchelouche K, Choyke PL (2016) Prostate-specific membrane antigen positron emission tomography in prostate cancer: a step toward personalized medicine. Curr Opin Oncol 28:216–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maurer T, Eiber M, Schwaiger M, Gschwend JE (2016) Current use of PSMA-PET in prostate cancer management. Nat Rev Urol 13:226–235

    Article  CAS  PubMed  Google Scholar 

  11. Carlucci G, Kuipers A, Ananias HJ et al (2015) GRPR-selective PET imaging of prostate cancer using [18F]-lanthionine-bombesin analogs. Peptides 67:45–54

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y, Hu X, Liu H, Bu L, Ma X, Cheng K, Li J, Tian M, Zhang H, Cheng Z (2013) A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 54:2132–2138

    Article  CAS  PubMed  Google Scholar 

  13. Morgat C, Mishra AK, Varshney R, Allard M, Fernandez P, Hindie E (2014) Targeting neuropeptide receptors for cancer imaging and therapy: perspectives with bombesin, neurotensin, and neuropeptide-Y receptors. J Nucl Med 55:1650–1657

    Article  CAS  PubMed  Google Scholar 

  14. Schlenter M, Berneking V, Krenkel B, Mottaghy FM, Vögeli TA, Eble MJ, Pinkawa M (2018) Intensity-modulated radiotherapy of prostate cancer with simultaneous integrated boost after molecular imaging with 18F-choline-PET/CT : clinical results and quality of life. Strahlenther Onkol 194:638–645

    Article  PubMed  Google Scholar 

  15. Parent EE, Schuster DM (2018) Update on 18f-fluciclovine PET for prostate cancer imaging. J Nucl Med 59(5):733–739

  16. Budaus L, Leyh-Bannurah SR, Salomon G et al (2016) Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 69:393–396

    Article  PubMed  Google Scholar 

  17. Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA, Chen Y, Yang X, Cho SY, Nimmagadda S, Pomper MG (2015) Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging 59:241–268

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  CAS  PubMed  Google Scholar 

  19. Lanciotti M, Masieri L, Raspollini MR et al (2014) The role of M1 and M2 macrophages in prostate cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy. Biomed Res Int 2014:6

    Article  Google Scholar 

  20. Gollapudi K, Galet C, Grogan T, Zhang H, Said JW, Huang J, Elashoff D, Freedland SJ, Rettig M, Aronson WJ (2013) Association between tumor-associated macrophage infiltration, high grade prostate cancer, and biochemical recurrence after radical prostatectomy. Am J Cancer Res 3:523–529

    PubMed  PubMed Central  Google Scholar 

  21. Hu W, Qian Y, Yu F et al (2015) Alternatively activated macrophages are associated with metastasis and poor prognosis in prostate adenocarcinoma. Oncol Lett 10:1390–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Squadrito M, De Palma M (2011) Macrophage regulation of tumor angiogenesis: implications for cancer therapy. Mol Asp Med 32:123–145

    Article  CAS  Google Scholar 

  25. Dai F, Liu L, Che G, Yu N, Pu Q, Zhang S, Ma J, Ma L, You Z (2010) The number and microlocalization of tumor-associated immune cells are associated with patient's survival time in non-small cell lung cancer. BMC Cancer 10:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawai O, Ishii G, Kubota K, Murata Y, Naito Y, Mizuno T, Aokage K, Saijo N, Nishiwaki Y, Gemma A, Kudoh S, Ochiai A (2008) Predominant infiltration of macrophages and CD8+ T cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer 113:1387–1395

    Article  CAS  PubMed  Google Scholar 

  27. Foss CA, Harper JS, Wang H, Pomper MG, Jain SK (2013) Noninvasive molecular imaging of tuberculosis-associated inflammation with radioiodinated DPA-713. J Infect Dis 208:2067–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Foss CA, Bedja D, Mease RC, Wang H, Kass DA, Chatterjee S, Pomper MG (2015) Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA. Biochem Biophys Res Commun 461:70–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Banerjee SR, Foss CA, Castanares M, Mease RC, Byun Y, Fox JJ, Hilton J, Lupold SE, Kozikowski AP, Pomper MG (2008) Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 51:4504–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castanares MA, Copeland BT, Chowdhury WH et al (2015) Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate. https://doi.org/10.1002/pros.23115

  31. Chen Y, Pullambhatla M, Banerjee SR, Byun Y, Stathis M, Rojas C, Slusher BS, Mease RC, Pomper MG (2012) Synthesis and biological evaluation of low molecular weight fluorescent imaging agents for the prostate-specific membrane antigen. Bioconjug Chem 23:2377–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castanares MA, Copeland BT, Chowdhury WH, Liu MM, Rodriguez R, Pomper MG, Lupold SE, Foss CA (2016) Characterization of a novel metastatic prostate cancer cell line of LNCaP origin. Prostate 76:215–225

    Article  CAS  PubMed  Google Scholar 

  33. Grant CL, Caromile LA, Ho V, Durrani K, Rahman MM, Claffey KP, Fong GH, Shapiro LH (2012) Prostate specific membrane antigen (PSMA) regulates angiogenesis independently of VEGF during ocular neovascularization. PLoS One 7:e41285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Klar AS, Michalak-Mićka K, Biedermann T, Simmen-Meuli C, Reichmann E, Meuli M (2018) Characterization of M1 and M2 polarization of macrophages in vascularized human dermo-epidermal skin substitutes in vivo. Pediatr Surg Int 34:129–135

    Article  PubMed  Google Scholar 

  35. Segawa N, Mori I, Utsunomiya H, Nakamura M, Nakamura Y, Shan L, Kakudo K, Katsuoka Y (2001) Prognostic significance of neuroendocrine differentiation, proliferation activity and androgen receptor expression in prostate cancer. Pathol Int 51:452–459

    Article  CAS  PubMed  Google Scholar 

  36. Dunsmuir WD, Gillett CE, Meyer LC et al (2000) Molecular markers for predicting prostate cancer stage and survival. BJU Int 86:869–878

    Article  CAS  PubMed  Google Scholar 

  37. Ordonez AA, Pokkali S, DeMarco VP et al (2014) Radioiodinated DPA-713 imaging correlates with bactericidal activity of tuberculosis treatments in mice. Antimicrob Agents Chemother 59:642–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cunningham D, You Z (2015) In vitro and in vivo model systems used in prostate cancer research. J Biol Methods 2:17. https://doi.org/10.14440/jbm.2015.63

    Article  Google Scholar 

  39. DeMarzo AM, Nelson WG, Isaacs WB, Epstein JI (2003) Pathological and molecular aspects of prostate cancer. Lancet 361:955–964

    Article  CAS  PubMed  Google Scholar 

  40. Huang E, Teh BS, Mody DR, Carpenter LS, Butler EB (2003) Prostate adenocarcinoma presenting with inguinal lymphadenopathy. Urology 61:463

    Article  PubMed  Google Scholar 

  41. Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP (1998) Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 82:2256–2261

    Article  CAS  PubMed  Google Scholar 

  42. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    CAS  PubMed  Google Scholar 

  43. Schlomm T, Petersen A, Hellwinkel O et al (2007) Alterations of the physiological PSMA expression patterns are associated with poor prognosis in prostate cancer. Cancer Res 67:160

    Article  CAS  Google Scholar 

  44. Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, Shapiro LH (2017) PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal 10(470). https://doi.org/10.1126/scisignal.aag3326.

  45. Su HC, Zhu Y, Ling GW, Hu SL, Xu XP, Dai B, Ye DW (2017) Evaluation of 99mTc-labeled PSMA-SPECT/CT imaging in prostate cancer patients who have undergone biochemical relapse. Asian J Androl 19:267–271

    Article  CAS  PubMed  Google Scholar 

  46. Pyka T, Okamoto S, Dahlbender M, Tauber R, Retz M, Heck M, Tamaki N, Schwaiger M, Maurer T, Eiber M (2016) Comparison of bone scintigraphy and 68Ga-PSMA PET for skeletal staging in prostate cancer. Eur J Nucl Med Mol Imaging 43:2114–2121

    Article  CAS  PubMed  Google Scholar 

  47. Rowe SP, Gorin MA, Hammers HJ, Pomper MG, Allaf ME, Javadi MS (2016) Detection of 18F-FDG PET/CT occult lesions with 18F-DCFPyL PET/CT in a patient with metastatic renal cell carcinoma. Clin Nucl Med 41:83–85

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sun Y, Niu J, Huang J (2009) Neuroendocrine differentiation in prostate cancer. Am J Transl Res 1:148–162

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Nonomura N, Takayama H, Nakayama M, Nakai Y, Kawashima A, Mukai M, Nagahara A, Aozasa K, Tsujimura A (2011) Infiltration of tumour-associated macrophages in prostate biopsy specimens is predictive of disease progression after hormonal therapy for prostate cancer. BJU Int 107:1918–1922

    Article  PubMed  Google Scholar 

  50. Kaittanis C, Andreou C, Hieronymus H, Mao N, Foss CA, Eiber M, Weirich G, Panchal P, Gopalan A, Zurita J, Achilefu S, Chiosis G, Ponomarev V, Schwaiger M, Carver BS, Pomper MG, Grimm J (2018) Correction: prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J Exp Med 215:377

    Article  PubMed  PubMed Central  Google Scholar 

  51. Colombatti M, Grasso S, Porzia A, Fracasso G, Scupoli MT, Cingarlini S, Poffe O, Naim HY, Heine M, Tridente G, Mainiero F, Ramarli D (2009) The prostate specific membrane antigen regulates the expression of IL-6 and CCL5 in prostate tumour cells by activating the MAPK pathways. PLoS One 4:e4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S (2017) COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A 114:1117–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang H, Wang C, Liu F, Li HZ, Peng G, Gao X, Dong KQ, Wang HR, Kong DP, Qu M, Dai LH, Wang KJ, Zhou Z, Yang J, Yang ZY, Cheng YQ, Tian QQ, Liu D, Xu CL, Xu DF, Cui XG, Sun YH (2018) Reciprocal network between cancer stem-like cells and macrophages facilitates the progression and androgen deprivation therapy resistance of prostate cancer. Clin Cancer Res 24:4612–4626. https://doi.org/10.1158/1078-0432.CCR-18-0461

    Article  CAS  PubMed  Google Scholar 

  54. Sun X, Gao D, Gao L, Zhang C, Yu X, Jia B, Wang F, Liu Z (2015) Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics 5:597–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, Bouwens L, Lahoutte T, de Baetselier P, Raes G, Devoogdt N, van Ginderachter JA (2012) Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res 72:4165–4177

    Article  CAS  PubMed  Google Scholar 

  56. Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS (2012) PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials 33:7785–7793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez-Medina C, Tang J, Abdel-Atti D, Hogstad B, Merad M, Fisher EA, Fayad ZA, Lewis JS, Mulder WJM, Reiner T (2015) PET imaging of tumor-associated macrophages with 89Zr-labeled high-density lipoprotein nanoparticles. J Nucl Med 56:1272–1277

    Article  CAS  PubMed  Google Scholar 

  58. Tucker EW, Pokkali S, Zhang Z, DeMarco VP, Klunk M, Smith ES, Ordonez AA, Penet MF, Bhujwalla Z, Jain SK, Kannan S (2016) Microglia activation in a pediatric rabbit model of tuberculous meningitis. Dis Model Mech 9:1497–1506

    Article  PubMed  PubMed Central  Google Scholar 

  59. Conway RE, Petrovic N, Li Z, Heston W, Wu D, Shapiro LH (2006) Prostate-specific membrane antigen regulates angiogenesis by modulating integrin signal transduction. Mol Cell Biol 26:5310–5324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ying Chen for provision of YC-XI-46-Cy5.5.

Funding

This study is supported by CA134675, CA184228, EB024495 and the anonymous donor through the James Buchanan Brady Urological Institute who, in part, funded this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine A. Foss or Martin G. Pomper.

Ethics declarations

Conflict of Interest

CAF and MGP hold a share in patent PCT/US13/31461 “Synthesis And Application Of Novel Imaging Agents Conjugated To DPA 713 Analogs For Imaging Inflammation” and MGP holds a share in US20120009121A1 “PSMA-targeting compounds and uses thereof”. All other authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copeland, B.T., Shallal, H., Shen, C. et al. Imaging and Characterization of Macrophage Distribution in Mouse Models of Human Prostate Cancer. Mol Imaging Biol 21, 1054–1063 (2019). https://doi.org/10.1007/s11307-019-01318-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-019-01318-5

Key words

Navigation