Skip to main content
Log in

How the chemical features of molecules may have addressed the settlement of metabolic steps

  • Review Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

While the evolutionary adaptation of enzymes to their own substrates is a well assessed and rationalized field, how molecules have been originally selected in order to initiate and assemble convenient metabolic pathways is a fascinating, but still debated argument.

Objectives

Aim of the present study is to give a rationale for the preferential selection of specific molecules to generate metabolic pathways.

Methods

The comparison of structural features of molecules, through an inductive methodological approach, offer a reading key to cautiously propose a determining factor for their metabolic recruitment.

Results

Starting with some commonplaces occurring in the structural representation of relevant carbohydrates, such as glucose, fructose and ribose, arguments are presented in associating stable structural determinants of these molecules and their peculiar occurrence in metabolic pathways.

Conclusions

Among other possible factors, the reliability of the structural asset of a molecule may be relevant or its selection among structurally and, a priori, functionally similar molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agranoff, B. W., & Brady, R. O. (1956). Purification and properties of calf liver ribokinase. Journal of Biological Chemistry, 219, 221–229.

    CAS  PubMed  Google Scholar 

  • Angyal, S. J., & Bethell, G. S. (1976). Conformational analysis in carbohydrate chemistry III. The 13C NMR spectra of the hexuloses. Australian Journal of Chemistry, 29, 1249–1265.

    Article  CAS  Google Scholar 

  • Angyal, S. J., & Pickles, V. A. (1972). Equilibria between pyranoses and furanoses. Australian Journal of Chemistry, 25, 1695–1710.

    Article  CAS  Google Scholar 

  • Balestri, F., Cappiello, M., Meschini, R., Rotondo, R., Abate, M., Del Corso, A., & Mura, U. (2015). Modulation of aldose reductase activity by aldose hemiacetals. Biochimica et Biophysica Acta, 1850, 2329–2339.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Even, A., Flamholz, A., Noor, E., & Milo, R. (2012). Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nature Chemical Biology, 8, 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Brownlee, M. (2005). The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 54, 1615–1625.

    Article  CAS  PubMed  Google Scholar 

  • Bunn, H. F., & Higgins, P. J. (1981). Reaction of monosaccharides with proteins: possible evolutionary significance. Science, 213, 222–224.

    Article  CAS  PubMed  Google Scholar 

  • Campos, V. C., & Tappy, L. (2016). Physiological handling of dietary fructose-containing sugars: implications for health. Internationl Journal of Obesity, 40, S6–S11.

    Google Scholar 

  • Copley, S. D. (2012). Toward a systems biology perspective on enzyme evolution. Journal of Biological Chemistry, 287, 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Del Corso, A., Cappiello, M., & Mura, U. (2008). From a dull enzyme to something else: facts and perspectives regarding aldose reductase. Current Medicinal Chemistry, 15, 1452–1461.

    Article  PubMed  Google Scholar 

  • Dworkin, J. P., & Miller, S. L. (2000). A kinetic estimate of the free aldehyde content of aldoses. Carbohydrate Research, 329, 359–363.

    Article  CAS  PubMed  Google Scholar 

  • Fersht, A. (1999). Structure and mechanism in protein science: Guide to enzyme catalysis and protein folding. New York: Freeman WH and Company.

    Google Scholar 

  • Fields, P. A., Dong, Y., Meng, X., & Somero, G. N. (2015). Adaptations of protein structure and function to temperature: There is more than one way to ‘skin a cat’. Journal of Experimental Biology, 218, 1801–1811.

    Article  PubMed  Google Scholar 

  • Firn, R. D., & Jones, C. G. A. (2009). Darwinian view of metabolism: Molecular properties determine fitness. Journal of Experimental Botany, 60, 719–726.

    Article  CAS  PubMed  Google Scholar 

  • Frey, P. A. (1996). The Leloir pathway: A mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB Journal, 10, 461–470.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, R. N., & Tewari, Y. (1989). Thermodynamic and transport properties of carbohydrates and their monophosphates: The pentoses and hexoses. Journal of Physical and Chemical Reference Data, 18, 809–880.

    Article  CAS  Google Scholar 

  • Hall, D. R., Bond, C. S., Leonard, G. A., Watt, C. I., Berry, A., & Hunter, W. N. (2002). Structure of tagatose-1,6-bisphosphate aldolase insight into chiral discrimination, mechanism, and specificity of class II aldolases. Journal of Biological Chemistry, 277, 22018–22024.

    Article  CAS  PubMed  Google Scholar 

  • Havel, P. J. (2005). Dietary fructose: Implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutrition Reviews, 63, 133–157.

    Article  PubMed  Google Scholar 

  • Hawley, J. A., Maughan, R. J., & Hargreaves, M. (2015). Exercise metabolism: Historical perspective. Cell Metabolism, 22, 12–17.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E. (2015). The metabolism of living tissues. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ichikawa, M., Scott, D. A., Losfeld, M. E., & Freeze, H. H. (2014). The metabolic origins of mannose in glycoproteins. Journal of Biological Chemistry, 289, 6751–6761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulichak, A. M., Wilson, J. E., Padmanabhan, K., & Garavito, R. M. (1998). The structure of mammalian hexokinase-1. Nature Structural Biology, 5, 555–560.

    Article  CAS  PubMed  Google Scholar 

  • Noor, E., Bar-Even, A., Flamholz, A., Reznik, E., Liebermeister, W., & Milo, R. (2014). Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLOS Computational Biology, 10(2), e1003483. https://doi.org/10.1371/journal.pcbi.1003483.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price, N. C., & Stevens, L. (1999). Fundamentals of enzymology: The cell and molecular biology of catalytic proteins. New York: Oxford University Press.

    Google Scholar 

  • Sajitz-Hermstein, M., & Nikoloski, Z. (2013). Structural control of metabolic flux. PLOS Computational Biology, 9(12), e1003368. https://doi.org/10.1371/journal.pcbi.1003368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, V., Ichikawa, M., Hudson, H., & Freeze, H. H. (2014). Mannose metabolism: More than meets the eye. Biochemical and Biophysical Research Communications, 453, 220–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slein, M. W., Cori, G. T., & Cori, C. F. (1950). A comparative study of hexokinase from yeast and animal tissues. Journal of Biological Chemistry, 186, 763–780.

    CAS  PubMed  Google Scholar 

  • Steinmann, B., Santer, R. (2012). Disorders of fructose metabolism. In J. M. Saudubray, G. van der Berghe, J. H. Walter (Eds.), Inborn metabolic diseases: Diagnosis and treatment (5th edn.) (pp. 157–165). New York: Springer.

    Chapter  Google Scholar 

  • Stincone, A., Prigione, A., Cramer, T., Wamelink, M. M. C., Campbell, K., Cheung, E., et al. (2015). The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biological Reviews, 90, 927–963.

    Article  PubMed  Google Scholar 

  • Zgiby, S. M., Thomson, G. J., Qamar, S., & Berry, A. (2000). Exploring substrate binding and discrimination in fructose 1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases. European Journal of Biochemistry, 267, 1858–1868.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to our biochemistry professor Pier Luigi Ipata for his continued passion for biochemical research. Thanks are also due to our colleagues at Pisa University, Prof. Mario Pellegrino and Prof. Aldo Paolicchi for their helpful discussions.

Funding

This work was supported by the University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Mura.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del-Corso, A., Cappiello, M., Moschini, R. et al. How the chemical features of molecules may have addressed the settlement of metabolic steps. Metabolomics 14, 2 (2018). https://doi.org/10.1007/s11306-017-1300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1300-1

Keywords

Navigation