Skip to main content
Log in

Metabolic profiling of Drosophila melanogaster metamorphosis: a new insight into the central metabolic pathways

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Metamorphosis is a complicated process in which cell proliferation, differentiation, and death are orchestrated to form the mature structures of insects. In Drosophila, this process is controlled by ecdysone, a steroid hormone responsible for tissue remodeling and organogenesis that gives rise to the adult fly.

Objective

By using a metabolomics approach, this study aimed to elucidate global changes in the central metabolic pathways in Drosophila throughout metamorphosis and then further examine the effects of temperature and origin on metabolic profiles.

Methods

Targeted and non-targeted metabolic profiling of time-course samples from Drosophila were constructed to cover a wide range of cellular metabolites during metamorphosis.

Results

This was the first wide-scale metabolomics study of Drosophila metamorphosis focusing on central metabolism. The abundance of detected metabolites changed drastically and correlated strongly with the development of Drosophila pupae. In non-stress conditions, temperature affected the developmental time, but the metabolic state at a certain stage of metamorphosis remained stable. Between D. melanogaster Canton S and Oregon R, similar metabolic profiles throughout metamorphosis was observed. However, there were still differences in purine and pyrimidine metabolism at an early stage in the pupal period, which was matched by differences in ecdysteroid levels.

Conclusion

This study supported the strength of metabolomics in the field of developmental biology. The results provided a general view on the metabolic profile of Drosophila during metamorphosis, which provides basic 3 knowledge for future metabolomics studies using Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrell, I. P. S., & Lundquist, A. M. (1973). Chapter 4—physiological and biochemical changes during insect development. In M. Rockstein. (Ed.), The physiology of insecta (Second Edition). New York: Academic Press.

    Google Scholar 

  • Aguila, J. R., Suszko, J., Gibbs, A. G. & Hoshizaki, D. K. (2007). The role of larval fat cells in adult Drosophila melanogaster. Journal of Experimental Biology, 210, 956–963.

  • An, P. N., Yamaguchi, M., Bamba, T., & Fukusaki, E. (2014). Metabolome analysis of Drosophila melanogaster during embryogenesis. PLoS One, 9, e99519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andres, A. J., Fletcher, J. C., Karim, F. D., & Thummel, C. S. (1993). Molecular analysis of the initiation of insect metamorphosis: A comparative study of Drosophila ecdysteroid-regulated transcription. Developmental Biology, 160, 388–404.

    Article  CAS  PubMed  Google Scholar 

  • Baehrecke, E. H. (1996). Ecdysone signaling cascade and regulation of Drosophila metamorphosis. Archives of Insect Biochemistry and Physiology, 33, 231–244.

    Article  CAS  Google Scholar 

  • Bainbridge, S. P., & Bownes, M. (1981). Staging the metamorphosis of Drosophila melanogaster. Journal of Embryology and Experimental Morphology, 66, 57–80.

    CAS  PubMed  Google Scholar 

  • Chiang, H. C. (1963). Tactic reactions of young adults of Drosophila melanogaster. The American Midland Naturalist, 70, 329–338.

    Article  Google Scholar 

  • Chintapalli, V. R., Al Bratty, M., Korzekwa, D., Watson, D. G., & Dow, J. A. (2013). Mapping an atlas of tissue-specific Drosophila melanogaster metabolomes by high resolution mass spectrometry. PLoS One, 8, e78066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M. B., & Li, T. (2013). Genomic analysis of the ecdysone steroid signal at metamorphosis onset using ecdysoneless and EcRnull Drosophila melanogaster mutants. Genes Genomics, 35, 21–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempo, Y., Ohta, E., Nakayama, Y., Bamba, T., & Fukusaki, E. (2014). Molar-based targeted metabolic profiling of cyanobacterial strains with potential for biological production. Metabolites, 4, 499–516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis (New York, N. Y.: 2000), 34, 1–15.

    Article  CAS  Google Scholar 

  • Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T., Mcdowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental health perspectives, 111, 1361–1375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, L. I., & Schneiderman, H. A. (1961). Some biochemical aspects of insect metamorphosis. American Zoologist, 1, 11–51.

    Article  CAS  Google Scholar 

  • Hariharan, R., Hoffman, J. M., Thomas, A. S., Soltow, Q. A., Jones, D. P., & Promislow, D. E. (2014). Invariance and plasticity in the Drosophila melanogaster metabolomic network in response to temperature. BMC Systems Biology, 8, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashim, Z., Mukai, Y., Bamba, T., & Fukusaki, E. (2014). Metabolic profiling of retrograde pathway transcription factors rtg1 and rtg3 knockout yeast. Metabolites, 4, 580–598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman, J. M., Soltow, Q. A., Li, S., Sidik, A., Jones, D. P., & Promislow, D. E. (2014). Effects of age, sex, and genotype on high-sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Aging Cell, 13, 596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe, E., Holton, K., Nair, S., Schlauch, D., Sinha, R., & Quackenbush, J. (2010). MeV: MultiExperiment viewer. In M. F. Ochs, J. T. Casagrande & R. V. Davuluri. (Eds.), Biomedical informatics for cancer research. Berlin: Springer.

    Google Scholar 

  • Kamleh, M. A., Hobani, Y., Dow, J. A. T., Zheng, L., & Watson, D. G. (2009). Towards a platform for the metabonomic profiling of different strains of Drosophila melanogaster using liquid chromatography–Fourier transform mass spectrometry. FEBS Journal, 276, 6798–6809.

    Article  CAS  PubMed  Google Scholar 

  • Kawase, N., Tsugawa, H., Bamba, T. & Fukusaki, E. (2014). Different-batch metabolome analysis of Saccharomyces cerevisiae based on gas chromatography/mass spectrometry. Journal of Bioscience and Bioengineering, 117, 248–255.

  • Laye, M. J., Tran, V., Jones, D. P., Kapahi, P., & Promislow, D. E. (2015). The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila. Aging Cell, 14, 797–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y., & Montell, C. (2013). Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons. Journal of Neuroscience, 33, 6716–6625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsley, D. L., Grell, E. H., & Bridges, C. B. (1972). Genetic variations of Drosophila melanogaster. Washington, D.C: Carnegie institution of Washington.

    Google Scholar 

  • Linford, N. J., Bilgir, C., Ro, J., & Pletcher, S. D. (2013). Measurement of lifespan in Drosophila melanogaster. The Journal of Visualized Experiments. doi:10.3791/50068.

    PubMed  Google Scholar 

  • Merkey, A. B., Wong, C. K., Hoshizaki, D. K., & Gibbs, A. G. (2011). Energetics of metamorphosis in Drosophila melanogaster. Journal of Insect Physiology, 57, 1437–1445.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, C. L., Yeager, R. D., Johnson, Z. J., D’annunzio, S. E., Vogel, K. R., & Werner, T. (2015). Long-term resistance of Drosophila melanogaster to the mushroom toxin alpha-amanitin. PLoS One, 10, e0127569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nation, J. L. (2008). Insect physiology and biochemistry, Second Edition. Boca Raton: CRC Press.

  • Putri, S. P., Nakayama, Y., Matsuda, F., Uchikata, T., Kobayashi, S., Matsubara, A. & Fukusaki, E. (2013). Current metabolomics: practical applications. The Journal of Bioscience and Bioengineering, 115, 579–589.

    Article  CAS  PubMed  Google Scholar 

  • Rajamohan, A., & Sinclair, B. J. (2009). Hardening trumps acclimation in improving cold tolerance of Drosophila melanogaster larvae. Physiological Entomology, 34, 217–223.

    Article  Google Scholar 

  • Reed, L. K., Lee, K., Zhang, Z., Rashid, L., Poe, A., Hsieh, B., Deighton, N., Glassbrook, N., Bodmer, R., & Gibson, G. (2014). Systems genomics of metabolic phenotypes in wild-type Drosophila melanogaster. Genetics, 197, 781–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon, A. B., Marx, D. B., & Harshman, L. G. (2001). A cost of reproduction in Drosophila melanogaster: stress susceptibility. Evolution, 55, 1600–1608.

    Article  CAS  PubMed  Google Scholar 

  • Scott Chialvo, C. H., Che, R., Reif, D., Motsinger-Reif, A., & Reed, L. K. (2016). Eigenvector metabolite analysis reveals dietary effects on the association among metabolite correlation patterns, gene expression, and phenotypes. Metabolomics, 12, 167.

    Article  Google Scholar 

  • St Johnston, D. (2002). The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics, 3, 176–188.

    Article  CAS  PubMed  Google Scholar 

  • Tennessen, J. M., Baker, K. D., Lam, G., Evans, J., & Thummel, C. S. (2011). The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metabolism, 13, 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennessen, J. M., Bertagnolli, N. M., Evans, J., Sieber, M. H., Cox, J., & Thummel, C. S. (2014). Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis. G3 (Bethesda), 4, 839–850.

    Article  CAS  Google Scholar 

  • Theodosiou, N. A., & Xu, T. (1998). Use of FLP/FRT system to study Drosophila development. Methods (San Diego, Calif.), 14, 355–365.

    Article  CAS  Google Scholar 

  • Tortoriello, G., Rhodes, B. P., Takacs, S. M., Stuart, J. M., Basnet, A., Raboune, S., Widlanski, T. S., Doherty, P., Harkany, T., & Bradshaw, H. B. (2013). Targeted lipidomics in Drosophila melanogaster identifies novel 2-monoacylglycerols and N-acyl amides. PLoS One, 8, e67865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsugawa, H., Tsujimoto, Y., Arita, M., Bamba, T., & Fukusaki, E. (2011). GC/MS based metabolomics: development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA). BMC Bioinformatics, 12, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaiserman, A. M., Zabuga, O. G., Kolyada, A. K., Pisaruk, A. V., & Kozeretska, I. A. (2013). Reciprocal cross differences in Drosophila melanogaster longevity: an evidence for non-genomic effects in heterosis phenomenon? Biogerontology, 14, 153–163.

    Article  CAS  PubMed  Google Scholar 

  • Warren, J. T., Yerushalmi, Y., Shimell, M. J., O’connor, M. B., Restifo, L. L., & Gilbert, L. I. (2006). Discrete pulses of molting hormone, 20-hydroxyecdysone, during late larval development of Drosophila melanogaster: correlations with changes in gene activity. Developmental Dynamics, 235, 315–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheelock, Å. & Wheelock, C. E (2013). Trials and tribulations of ‘omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine. Molecular BioSystems, 9, 2589–2596.

  • Wigglesworth, V. B. (2012). The principles of insect physiology. Berlin: Springer.

    Google Scholar 

  • Williams, S., Dew-Budd, K., Davis, K., Anderson, J., Bishop, R., Freeman, K., Davis, D., Bray, K., Perkins, L., Hubickey, J., & Reed, L. K. (2015). Metabolomic and gene expression profiles exhibit modular genetic and dietary structure linking metabolic syndrome phenotypes in Drosophila. G3 (Bethesda), 5, 2817–2829.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015). MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Research, 43, W251–W257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Bloomington Stock Center and Prof. Mi-Ae Yoo for fly stocks. This study was partially supported by Grants-in-Aid from the Japan Society for the Promotion of Science (JSPS) Core-to-Core Program, B. Asia-Africa Science Platforms. Phan Nguyen Thuy An is supported financially by The Ministry of Education, Culture, Sports, Science and Technology, Japan. This study represents a portion of the dissertation submitted by Phan Nguyen Thuy An to Osaka University in partial fulfillment of the requirements for her Ph.D.

Author contributions

P.N.T.A., M.Y., and E.F. conceived, designed and analyzed the experiments. P.N.T.A. and M.Y. performed the experiments. P.N.T.A. wrote the paper. All authors reviewed the manuscript.

Funding

This study is partially supported by Grants-in-Aid from Japan Society for the Promotion of Science (JSPS) Core-to-Core Program, B. Asia-Africa Science Platforms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichiro Fukusaki.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 205 KB)

Supplementary material 2 (DOCX 2026 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, P.N.T., Yamaguchi, M. & Fukusaki, E. Metabolic profiling of Drosophila melanogaster metamorphosis: a new insight into the central metabolic pathways. Metabolomics 13, 29 (2017). https://doi.org/10.1007/s11306-017-1167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1167-1

Keywords

Navigation