Skip to main content
Log in

NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Citrus canker, a disease caused by Xanthomonas axonopodis pv. citri (Xac) bacteria, has been responsible for extensive economic losses in citriculture. In this work, we report the metabolic responses of citrus plants during disease development. This information can be useful for understanding the natural mechanism of plant defense beyond helping design new varieties and/or genetically modified genotypes for tolerance/resistance against citrus canker.

Objectives

To understand how primary metabolism is affected in two sweet orange genotypes during citrus canker development.

Methods

1H NMR spectroscopy together with chemometrics was used to evaluate the metabolic changes caused by Xac infection at various time points (days 4, 12 and 20) in Citrus sinensis L. Osbeck leaves from non-transgenic and transgenic plants expressing the antibacterial peptide sarcotoxin.

Results

The results revealed a high level of metabolic similarity between the studied genotypes without Xac infection. However, after Xac infection, the plants responded differently to disease development. The non-transgenic genotype showed altered early precursors of some secondary metabolites (tryptophan, tyrosine and putrescine) in addition to signaling metabolites of biotic stress (putrescine and dimethylamine), and the drastic reduction of gluconeogenesis was the overall metabolic cost for defense. The transgenic genotype suffered late metabolic changes due to the protective stoichiometric role of sarcotoxin. In addition, the oxidative stress response was more balanced in transgenic than in non-transgenic plants.

Conclusion

An NMR-based metabolomic approach was useful for understanding plant–pathogen interactions in citrus canker. Our findings provide valuable preliminary insights into different stages of citrus canker development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiologia Plantarum, 132, 117–135.

    CAS  PubMed  Google Scholar 

  • Bespalhok Filho, J. C., Kobayashi, A. K., Pereira, L. F. P., & Vieira, L. G. E. (2001). Laranja transgênica: Transformação de laranja visando resistência ao cancro cítrico usando genes de peptídeos antibacterianos. Biotecnologia Ciência & Desenvolvimento, 28, 229–234.

    Google Scholar 

  • Boscariol, R. L., Monteiro, M., Takahashi, E. K., Chabregas, S. M., Vieira, M. L. C., Vieira, L. G. E., Mourão-Filho, F. A. A., Cardoso, S. C., Christiano, R. S. C., Bergamin Filho, A., Barbosa, J. M., Azevedo, F. A., & Mendes, B. M. J. (2006). Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis ‘Hamlin’. Journal of the American Society for Horticultural Science, 131(4), 530–536.

    CAS  Google Scholar 

  • Brunnings, A. M., & Gabriel, D. W. (2003). Xanthomonas citri: Breaking the surface. Molecular Plant Pathology, 3(4), 141–157.

    Article  Google Scholar 

  • Cernadas, R. A., Camillo, L. R., & Benedetti, C. E. (2008). Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii. Molecular Plant Pathology, 9(5), 609–631.

    Article  CAS  PubMed  Google Scholar 

  • Cevallos-Cevallos, J. M., Futch, D. B., Shilts, T., Folimonova, J. I., & Reyes-De-Corcuera, J. I. (2012). GC-MS metabolomic differentiation of selected citrus varieties with diferente sensitivity to citrus huanglongbing. Plant Physiology and Biochemistry, 53, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y. H., Tapias, E. C., Hye, K. K., Lefeber, A. W. M., Erkelens, C., Verhoeven, J. T. J., et al. (2004). Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiology, 135, 2398–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Mello, J. P. F. (2015). Amino acids in higher plants. Edinburgh: Cabi Publishing.

    Google Scholar 

  • Dutta, T. K., Papolu, P. K., Banakar, P., Choudhary, D., Sirohi, A., & Rao, U. (2015). Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes. Frontiers in Microbiology, 6(260), 1–14.

    Google Scholar 

  • Fabro, G., Kovács, I., Pavet, V., Szabados, L., & Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. American Phytopathological Society, 17(4), 343–350.

    CAS  Google Scholar 

  • Genoud, T., & Métraux, J. -P. (1999). Crosstalk in plant cell signaling: Structure and function of the genetic network. Trends in Plant Science, 4(12), 503–507.

    Article  CAS  PubMed  Google Scholar 

  • Gonsalves, D., Gonsalves, C., Ferreira, S., Pitz, K., Fitch, M., Manshardt, R., & Slightom, J. (2004). Transgenic virus resistant papaya: From hope to reality for controlling papaya ringspot virus in Hawaii. American Phytopathological Society. Retrieved August 21, 2016 from http://oregonstate.edu/instruct/bi430-fs430/Documents-2004/3B-BIOTECH%20METH/Gonsalves-papaya-story-AmPhytopSoc2004.pdf.

  • Gottwald, T. R., Graham, J. H., & Schubert, T. S. (2002). Citrus canker: The pathogen and its impact. Plant Health Progress. Retrieved August 20, 2016 from https://www.plantmanagementnetwork.org/pub/php/review/citruscanker/.

  • Grosser, J. W., Dutt, M., Omar, A., Orbovic, V., & Barthe, G. (2011). Progress towards the development of transgenic disease resistance in citrus. Acta Horticulturae, 892, 101–107.

    Article  Google Scholar 

  • Grover, R., & Gowthaman, R. (2003). Strategies for development of fungus-resistant transgenic plants. Current Science, 84(3), 330–340.

    Google Scholar 

  • Hare, P. D., & Cress, W. A. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21, 79–102.

    Article  CAS  Google Scholar 

  • Hwang, I. S., An, S. H., & Hwang, B. K. (2011). Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens. The Plant Journal, 67, 749–762.

    Article  CAS  PubMed  Google Scholar 

  • Itai, C., & Paleg, L. G. (1982). Responses of water-stressed Hordeum distichum L. and Cucumis sativus to proline and betaine. Plant Science Letters, 25, 329–335.

    Article  CAS  Google Scholar 

  • Khalaf, A., Moore, G. A., Jones, J. B., & Gmitter, F. G. J. (2007). New insights into the resistance of Nagami kumquat to canker disease. Physiological and Molecular Plant Pathology, 71, 240–0250.

    Article  CAS  Google Scholar 

  • Kumar, N., Ebel, R. C., & Roberts, P. D. (2011). H2O2 metabolism during sweet orange (Citrus sinensis L. Osb.) ‘Hamlin’ Xanthomonas axonopodis pv. citri interaction. Scientia Horticulturae, 128, 465–472.

    Article  CAS  Google Scholar 

  • Lima, M. R. M., Felgueiras, M. L., Graca, G., Rodrigues, J. E. A., Barros, A., Gil, A. M., & Dias, A. C. P. (2010). NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves. Journal of Experimental Botany, 61, 4033–4042.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Holmes, E., & Lindon, J. C. (2007). Chapter 1: Metabonomics and metabolomics techniques and their applications in mammalian systems. In the handbook of metabonomics and metabolomics (pp. 1–34). Elsevier.

  • Ohshima, M., Mitsuhara, I., Okamoto, M., Sawano, S., Nishiyama, K., Kaku, H., et al. (1999). Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. The Journal of Biochemistry, 125, 431–435.

    Article  CAS  PubMed  Google Scholar 

  • Poulson-Ellestad, K. L., Jones, C. M., Roy, J., Viant, M. R., Fernández, F. M., Kubanek, J., & Nunn, B. L. (2014). Metabolomics and proteomics reveal impacts of chemically mediated competition on marine plankton. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 9009–9014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes, D., & Hanson, A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Reviews of Plant Physiology and Plant Molecular, 44, 357–384.

    Article  CAS  Google Scholar 

  • Rojas, C. M., Senthil-Kumar, M., Tzin, V., & Mysore, K. S. (2014). Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Frontiers in Plant Science, 5, 1–12.

    Article  CAS  Google Scholar 

  • Rossi, F. R., Mariana, M., & Pieckenstain, F. L. (2015). Role of arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava. Plant Biology, 17, 831–839.

    Article  CAS  PubMed  Google Scholar 

  • Silva, L. M. A., Alves, E. G. F., Choze, R., Lião, L. M., & Alcantara, G. B. (2012). 1H HRMAS NMR spectroscopy and chemometrics for evaluation of metabolic changes in Citrus sinensis caused by Xanthomonas axonopodis pv. citri. Journal of the Brazilian Chemical Society, 23(6), 1054–1061.

    Article  CAS  Google Scholar 

  • Skopelitis, D. S., Paranychianakis, N. V., Paschalidis, K. A., Pliakonis, E. D., Delis, I. D., Yakoumakis, D. I., et al. (2006). Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. The Plant Cell Online, 18(10), 2767–2781.

    Article  CAS  Google Scholar 

  • Summers, P. S., & Weretilnyk, E. A. (1993). Choline synthesis in relation to salt stress. Plant Physiology, 103, 1269–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados, L., & Savouré, A. (2009). Proline: A multifunctional amino acid. Cell Press, 15, 89–97.

    Google Scholar 

  • Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. Journal of Physiology, 552(2), 335–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uawisetwathana, U., Graham, S. F., Kamolsukyunyong, W., Sukhaket, W., Klanchui, A., Toojinda, T., et al. (2015). Quantitative 1H NMR metabolome profiling of Thai Jasmine rice (Oryza sativa) reveals primary metabolic response during brown planthopper infestation. Metabolomics. doi:10.1007/s11306-015-0817-4.

    Google Scholar 

  • Wally, O., & Punja, Z. K. (2010). Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. Genetically Modified Crops, 1(4), 199–206.

    Google Scholar 

  • Wink, M. (2010). Biochemistry of plant secondary metabolism. Chichester: Wiley.

  • Winter, G., Todd, C. D., Trovato, M., Foriani, G., & Funck, D. (2015). Physiological implications of arginine metabolism in plant. Frontiers in Plant Science, 6, 1–14.

    Article  Google Scholar 

  • Zhang, J., Zhang, Y., Du, Y., Chen, S., & Tang, H. (2011). Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research, 10(4), 1904–1914.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucia Braz Alcantara.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethical approval

This article does not contain any studies with human or animal subjects.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (DOC 82 KB)

Supplementary Table S2 (DOC 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Prado Apparecido, R., Carlos, E.F., Lião, L.M. et al. NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics 13, 20 (2017). https://doi.org/10.1007/s11306-017-1163-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1163-5

Keywords

Navigation