Skip to main content
Log in

Furosemide enhances the sensitivity of urinary metabolomics for assessment of kidney function

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The ability of urinary metabolomics to detect meaningful, tissue-specific, biological effects (i.e., toxicity, disease) is compounded by high background variability. We hypothesize that sensitivity can be enhanced by imposing a tissue-targeted metabolic stressor.

Objective

We tested whether the sensitivity of metabolomics to assess kidney function is improved under the diuretic stress of furosemide.

Methods

To mildly compromise kidney, rats were given a sub-acute dose of d-serine. Then at 24 h postdose, we administered vehicle solution (control) or the diuretic drug, furosemide, and conducted NMR-based urinary metabolomics.

Results

Principal Components and OPLS discriminant analyses showed no effects on urinary profiles in rats receiving d-serine alone. However, the effects of d-serine were observable under furosemide-induced stress, as urinary profiles classified separately from rats receiving furosemide alone or vehicle-treated controls (p < 0.001). Furthermore, this profile was uniquely different from a co-treatment effect observed following co-administration of d-serine + furosemide. We identified 24 metabolites to classify the effects of furosemide in normal rats vs. d-serine-compromised rats. Most notably, a furosemide-induced increase in urinary excretion of α-ketoglutarate, creatinine, trigonelline, and tryptophan in control rats, was significantly reduced in d-serine exposed rats (p < 0.05). Interestingly, increased tryptophan metabolism has been shown to correlate with the severity of kidney transplant failure and chronic kidney disease.

Conclusions

We attribute these effects to differences in kidney function, which were only detectable under the stress imposed by furosemide. This technique may extend to other organ systems and may provide improved sensitivity for assessment of tissue function or early detection of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. We “spiked” a urine sample with furosemide at a concentration equivalent to that which would be expected assuming that the entire furosemide dose was excreted into urine within 24 h postdose (~0.3 mM). The observable furosemide signals were very weak, and in experimental animal samples the signals were barely detectable and did not interfere with our analyses, as none were chosen as salient features for class discrimination. Detection of furosemide metabolites was ignored since >80% is known to be excreted as the parent compound.

References

  • Anderson, P. E., Mahle, D. A., Doom, T. E., Reo, N. V., DelRaso, N. J., & Raymer, M. L. (2011). Dynamic adaptive binning: An improved quantification technique for NMR spectroscopic data. Metabolomics, 7, 179–190.

    Article  CAS  Google Scholar 

  • Assfalg, M., Bertini, I., Colangiuli, D., et al. (2008). Evidence of different metabolic phenotypes in humans. Proceedings of the National Academy of Sciences of the USA, 105, 1420–1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, J. D., Sadler, P. J., Morris, V. C., & Levander, O. A. (1991). Effect of aging and diet on proton NMR-spectra of rat urine. Magnetic Resonance in Medicine, 17, 414–422.

    Article  CAS  PubMed  Google Scholar 

  • Bollard, M. E., Stanley, E. G., Lindon, J. C., Nicholson, J. K., & Holmes, E. (2005). NMR-based metabolomics approaches for evaluating physiological influences on biofluid composition. NMR in Biomedicine, 18, 143–162.

    Article  CAS  PubMed  Google Scholar 

  • Brandacher, G., Cakar, F., Winkler, C., et al. (2007). Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation. Kidney International, 71, 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Brenner, B. M., Keimowitz, R. I., Wright, F. S., & Berliner, R. W. (1969). An inhibitory effect of furosemide on sodium reabsorption by the proximal tubule of the rat nephron. Journal of Clinical Investigation, 48, 290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke, T. J., Robinson, R. R., & Clapp, J. R. (1972). Determination of the effect of furosemide on the proximal tubule. Kidney International, 1, 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Carone, F. A., & Ganote, C. E. (1975). d-Serine nephrotoxicity. The nature of proteinuria, glucosuria, and aminoaciduria in acute tubular necrosis. Archives of Pathology, 99, 658–662.

    CAS  PubMed  Google Scholar 

  • Chen, L., & Burka, L. T. (2007). Chemical and enzymatic oxidation of furosemide: formation of pyridinium salts. Chemical Research in Toxicology, 20, 1741–1744.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, S., Steiness, E., & Christensen, H. (1986). Tubular sites of furosemide natriuresis in volume-replaced and volume-depleted conscious rats. The Journal of Pharmacology and Experimental Therapeutics, 239, 211–218.

    CAS  PubMed  Google Scholar 

  • Connor, S. C., Wu, W., Sweatman, B. C., et al. (2004). Effects of feeding and body weight loss on the 1H-NMR based urine metabolic profiles of male Wistar Han rats: implications for biomarker discovery. Biomarkers: Biochemical Indicators of Exposure, Response, and Susceptibility to Chemicals, 9, 156–179.

    Article  CAS  Google Scholar 

  • Costa, M., Marchetti, M., Balaszczuk, A., & Arranz, C. (2001). Effects of l-arginine and furosemide on blood pressure and renal function in volume-exapnded rats. Clinical and Experimental Pharmacology and Physiology, 28, 528–532.

    Article  CAS  PubMed  Google Scholar 

  • Cvetanovic, I., Renade, V., Molnar, J., Whelton, A., & Somberg, J. (2007). The evaluation of the diuretic action of parenteral formulations of metolazone. American Journal of Therapeutics, 14, 25–29.

    Article  PubMed  Google Scholar 

  • DelRaso, N., Mauzy, C., & Rietcheck, R. (2009a). Biomarkers of exposure to toxic substances Volume I: Global experimental design: biomarker discovery for early prediction of organ-selective toxicity Air Force Research Laboratory Technical Report. Vol AFRL-RH-WP-TR-2009-0102.

  • DelRaso, N. J., Rietcheck, R., & Mahle, D. (2009b). Metabonomics biomarkers to liver and organ damage: Biomarker discovery for early prediction of organ-selective toxicity. In AFRL-RH-WP-TR-2009-0105 (ed). vol 4.

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Analytical Chemistry, 78, 4281–4290.

    Article  CAS  PubMed  Google Scholar 

  • Gao, H., Dong, B., Liu, X., Xuan, H., Houang, Y., & Lin, D. (2008). Metabonomic profiling of renal cell carcinoma: High-resolution proton nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Analytica Chemica Acta, 624, 269–277.

    Article  CAS  Google Scholar 

  • Gao, H., Lu, Q., Liu, X., et al. (2009). Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Science, 100, 782–785.

    Article  CAS  PubMed  Google Scholar 

  • Genote, C. E., Peterson, D. R., & Carone, F. E. (1974). The nature of d-serine-induced nephrotoxicity. American Journal of Pathology, 77, 269–282.

    Google Scholar 

  • Habold, C., Chevalier, C., Dunnel-Erb, S., Foltzer-Jourdainne, C., Le Maho, Y., & Lignor, J. H. (2004). Effects of fasting and refeeding on jejunal morphology and cellular activity in rats in relation to depletion of body stores. Scandnavian Journal of Gastroenterology, 6, 531–539.

    Article  Google Scholar 

  • Hansen, L. L., Schilling, A. R., & Wiederholt, M. (1981). Effect of calicium, furosemide and chlorothiazine on net volume reabsorption and basolateral membrane potential of distal tubule. Pflugers Archiv European. Journal of Physiology, 389, 121–126.

    CAS  Google Scholar 

  • Ho, K. M., & Power, B. M. (2010). Benefits and risks of furosemide in acute kidney injury. Anaesthesia, 65, 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Nicholls, A. W., Lindon, J. C., et al. (2000). Chemometric models for toxicity clarification based on NMR spectra of biofluids. Chemical Research in Toxicology, 13, 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E., Nicholson, J. K., & Tranter, G. (2001). Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. Chemical Research in Toxicology, 14, 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, G.-S., Yang, J.-Y., Ryu, D. H., & Kwon, T.-H. (2010). Metabolic profiling of kidney and urine in rats with lithium-induced nephrogenic diabetes insipidus by 1H NMR-based metabonomics. American Journal of Physiology: Renal Physiology 298, F461–F470.

    CAS  PubMed  Google Scholar 

  • Iyalomhe, G., Omogbai, E., Ozolua, R., & Iyalomhe, O. (2008). Effects of hydrochlorothiazide and furosemide on creatinine clearance in some hypertensive Nigerians. African Journal of Biotechnology, 7, 848–851.

    CAS  Google Scholar 

  • Jung, J., Park, M., Park, H. J., et al. (2010). 1H NMR-based metabolic profiling of naproxen-induced toxicity in rats. Toxicology Letters, 200, 1–7.

    Article  PubMed  Google Scholar 

  • Kale, V. P., Joshi, G. S., Parikshit, B., & Jain, M. R. (2009). Effect of fasting duration on clinical pathology results in Wistar rats. Veterinary Clinical Pathology, 38, 361–366.

    Article  PubMed  Google Scholar 

  • Khan, A., Low H., & Efendic, S. (1985). Effects of fasting and refeeding on the activity of hepatic glucose-6-phosphatase in rats. Acta Physiologica Scandinavia, 124, 591–596.

    Article  CAS  Google Scholar 

  • Kind, T., Tolstikov, V., Fiehn, O., & Weiss, R. H. (2007). A comprehensive urinary metabolomics approach for identifying kidney cancer. Analytical Biochemistry, 363, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Klawitter, J., Bendrick-Peart, J., Rudolph, B., et al. (2009). Urine metabolites reflect time-dependent effects of cyclosporine and sirolimus on rat kidney function. Chemical Research in Toxicology, 22, 118–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klawtter, J., Haschke, M., Kahle, C., et al. (2010). Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. British Journal of Clinical Pharmacology, 70, 241–251.

    Article  Google Scholar 

  • Kochhar, S., Jacobs, D. M., Ramadan, Z., Berruex, F., Fuerholz, A., & Fay, L. B. (2006). Probing gender-specific metabolism differences in humans by nuclear magnetic resonance-based metabolomics. Analytical Biochemistry, 352, 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Koyner, J., Davison, D., Brasha-Mitchell, E., et al. (2015). Furosemide stress test and biomarkers for the prediction of AKI severity. Journal of the American Society of Nephrology, 26, 2023–2031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug, A. W., Volker, K., Dntzler, W. H., Silbernagl, S. (2007). Why d-serine is nephrotoxic and α-aminoisobutyric acid protective?. American Journal of Physiology: Renal Physiology, 293, F382–F390.

    CAS  PubMed  Google Scholar 

  • Kutina, A. V., Zakharov, V. V., & Natochin, Y. V. (2008). Excretion of proteins by rat kidney during various types of diuresis. Bulletin of Experimental Biology and Medicine, 146, 671–674.

    Article  CAS  PubMed  Google Scholar 

  • Lahdou, I., Sadeghi, M., Daniel, V., et al. (2010). Increased pretransplantation plasma kynurenine levels do not protect from but predict acute kidney allograph rejection. Human Immunology, 71, 1067–1072.

    Article  CAS  PubMed  Google Scholar 

  • Lassnigg, A., Donner, E., Grubhofer, G., Presterl, E., Druml, W., & Hiesmayr, M. (2000). Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. Journal of American Society of Nephrology, 11, 97–104.

    CAS  Google Scholar 

  • LeBrun, M., Grenier, L., Bergeron, M. G., Thibault, L., Labrecque, G., & Beauchamp, D. (1999). Effect of fasting on temporal variation in the nephrotoxicity of Amphotericin B in rats. Antimicrobial Agents and Chemotherapy, 43, 520–524.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenaerts, K., Sokotovic, M., Bouwman, F. G., Lamers, W. H., Mariman, E. C., & Renes, J. (2006). Stavation induces phase-specific changes in the proteome of mouse small intestine. Journal of Proteome Research, 5, 2113–2122.

    Article  CAS  PubMed  Google Scholar 

  • Lenz, E., Bright, J., Wilson, I., et al. (2004a). Metabonomics, dietary influences and cultural differences: A 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. Journal of Pharmaceutical and Biomedical Analysis, 36, 841–849.

  • Lenz, E., Bright, J., Wilson, I., Morgan, S., & Nash, A. (2003). A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. Journal of Pharmaceutical and Biomedical Analysis, 33, 1103–1115.

    Article  CAS  PubMed  Google Scholar 

  • Lenz, E. M., Bright, J., Knight, R., Wilson, I. D., & Major, H. (2004b). Cyclosporin A-induced changes in endogenous metabolites in rat urine: A metabonomic investigation using high field 1H NMR spectroscopy, HPLC-TOF/MS and chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 35, 599–608.

  • Lindon, J. C., E. Holmes, & J. K. Nicholson (2003). So what is the deal with the metabolomics?. Analytical Chemistry, 75, 385A–391A.

    Article  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004). Toxicological applications of magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 45, 109–143.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., Holmes, E., & Everett, J. R. (2000). Metabolomics: Metabolic Processes Studied by NMR Spectroscopy of Biofluids. Concepts in Magnetic Resonance, 12, 289–300.

    CAS  Google Scholar 

  • Lombardi, R., Ferreiro, A., & Servetto, C. (2003). Renal function after cardiac surgery: Adverse effect of furosemide. Renal Failure, 25, 775–786.

    Article  CAS  PubMed  Google Scholar 

  • Maclntyre, D., Jimenez, B., Lewintre, E. J., et al. (2010). Serum metabolome analysis by 1H NMR reveals differences between chronic lymphocytic leukemia molecular subgoups. Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, U. K, 24, 788–797.

    Article  Google Scholar 

  • Mahesh, B., Yim, B., Robson, D., Pillai, R., Ratnatunga, C., & Pigott, D. (2008). Does furosemide prevent renal dysfunction in high-risk cardiac surgical patients? Results of a double-blinded prospective randomised trial. European Journal of Cardio-Thoracic Surgery, 33, 370–376.

    Article  PubMed  Google Scholar 

  • Mahle, D. A., Anderson, P. E., DelRaso, N. J., Raymer, M. L., Neuforth, A. E., & Reo, N. V. (2011). A generalized model for metabolomics analyses: application to dose and time dependent toxicity. Metabolomics, 7, 206–216.

    Article  CAS  Google Scholar 

  • Martin, F. P. J., Collino, S., & Rezzi, S. (2011). 1 H NMR-based metabonomic applications to decipher gut microbial metabolic influence on mammalian health. Magnetic Resonance in Chemistry, 49, S47–S54.

    Article  CAS  PubMed  Google Scholar 

  • Munn, D., Zhou, M., Attwood, J., Bondarev, I., Conway, S., & Marshall, B. (1998). Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 281, 1191–1193.

    Article  CAS  PubMed  Google Scholar 

  • Myles, P., Buckland, M., Schenk, N., et al. (1993). Effect of ‘renal-dose’ dopamine on renal function following cardiac surgery. Anaesthesia and Intensive Care, 21, 56–61.

    CAS  PubMed  Google Scholar 

  • Ng, D. J. Y., & Pasikanti, K. K. (2011). Trend analysis of metabonomics and systematic review of metabonomics-derived cancer marker metabolites. Metabolomics, 7, 155–178.

    Article  CAS  Google Scholar 

  • Nicholls, A. W., Holmes, E., Lindon, J. C., et al. (2001). Metabonomic investigation into Hydrazine toxicity in the rat. Chemical Research in Toxicology, 14, 975–987.

    Article  CAS  PubMed  Google Scholar 

  • Nicholls, A. W., Mortishire-Smith, R. J., & Nicholson, J. K. (2003). NMR spectroscopic-based metabolomics studies of urinary metabolite variation in acclimatizing germ-free rats. Chemical Research in Toxicology, 16, 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabonomics’: Understanding the metabolic response of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica; The Fate of Foreign Compounds in Biological Systems, 29, 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, J. K., & Wilson, I. D. (1989). High resolution proton NMR spectroscopy of biological fluids. Progress in Nuclear Magnetic Resonance Spectroscopy, 449–501.

  • Nowland, M. H., Hugunin, K. M. S. & Rogers, K. L. (2011). Effects of short-term fasting in male Sprague–Dawley rats. Comparative Medicine, 61, 138–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oberleithner, H., Guggino, W., & Giebisch, G. (1983). The effect of furosemide on lumunal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney. Effects of potassium adaptation. Pflugers Archiv European. Journal of Physiology, 396, 27–33.

    CAS  Google Scholar 

  • Odunsi, K., Wollman, R. M., Ambrosone, C. B., et al. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. International Journal of Cancer, 113, 782–788.

    Article  CAS  PubMed  Google Scholar 

  • Pichette, V., & Du Souich, P. (1996). Role of the kidneys in the metabolism of furosemide: Its inhibition by probenecid. Journal of the American Society of Nephrology, 7, 345–349.

    CAS  PubMed  Google Scholar 

  • Pichette, V., Geadah, D., & du Souich, P. (1999). Role of plasma protein binding on renal metabolism and dynamics of furosemide in the rabbit. Drug Metabolism and Disposition, 27, 81–85.

    CAS  PubMed  Google Scholar 

  • Psihogios, N. G., Gazi, I. F., Elisaf, M. S., Seferiadis, K. I., & Bairaktari, E. T. (2008). Gender-related and age-related urinalysis of healthy subjects by NMR-based metabolomics. NMR in Biomedicine, 21, 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, D. G. (2005). Metabonomics in toxicology: A review. Toxicological Sciences, 85, 809–822.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., & Braden, T. K. (2000). Metabonomics: Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicological Sciences, 57, 326–337.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, D. G., Ruepp, S., Stryker, S. A., et al. (2011). Metabolomic and transcriptomic changes induced by overnight (16 h) fasting in male and female Sprague–Dawley rats. Chemical Research in Toxicology, 24, 481–487.

    Article  CAS  PubMed  Google Scholar 

  • Rozman, K. K., & Doull, J. (1998). General principles of toxicology. In J. Rose (Ed.) Environmental toxicology: Current development (pp. 1–11). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Savorani, F., Rasmussen, M. A., Mikkelsen, M. S., & Engelsen, S. B. (2013). A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Research International, 54, 1131–1145.

    Article  CAS  Google Scholar 

  • Schefold, J. C., Zeden, J. P., Fotopoulou, C., et al. (2009). Increased indoleamine 2,3-dioxygenase (IDO) activity and elevated serum levels of tryptophan catabolites in patients with chronic kidney disease: A possible link between chonric inflammation and uraemic symptoms. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association: European Renal Association, 24, 1901–1908.

    Article  CAS  Google Scholar 

  • Seely, J. F., & Dirks, J. H. (1977). Site of action of diuretic drugs. Kidney International, 11, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Sieber, M., Hoffmann, D., Adler M., et al. (2009). Comparative analysis of novel noninvasive renal biomarkers and metabonomic changes in a rat model of gentamicin nephrotoxicity. Toxicological Sciences, 109, 336–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silbernagl, S., Volker, K., & Dantzler, W. H. (1999). d-Serine is reabsorbed in rat renal pars rectal. American Journal of Pathology, 276, F857–F863.

    CAS  Google Scholar 

  • Smilde, A., Westerhuis, J., Hoefsloot, H., et al. (2010). Dynamic metabomoic data analysis: A tutorial review. Metabolomics, 6, 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Solanky, K., Bailey, N., Beckwith-Hall, B., et al. (2003). Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Analytical Biochemistry, 323, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Solanky, K., Bailey, N., Beckwith-Hall, B., et al. (2005). Biofluid 1H NMR-based metabonomic techniques in nutrition research: Metabolic effects of dietary isoflavones in humans. Journal of Nutritional Biochemistry, 16(4), 236–244.

  • Sumner, L., Amberg, A., Barrett, D., et al. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3, 211–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Schnackenberg, L. K., Holland, R. D., et al. (2008). Metabonomics evaluation of urine from rats given acute and chronic doses of acetominophen using NMR and UPLC/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 871, 328–340.

    Article  CAS  PubMed  Google Scholar 

  • Terness, P., Bauer, T., Rose, L., et al. (2002). Inhibition of allogeneic T-cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: Medication of suppression by tryptophan metabolites. Journal of Experimental Medicine, 196, 447–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiziani, S., Lopes, V., & Gunther, U. L. (2009). Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia (New York, N. Y.), 11, 269–276.

    Article  CAS  Google Scholar 

  • Tonomura, Y., Tsuchiya, N., Torii, M., & Uehara, T. (2010). Evaluation of the usefulness of urinary biomarkers fro nephrotoxicity in rats. Toxicology, 273, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Vavrincova-Yaghi, D., Seelen, M. A., Kema, I. P., et al. (2015). Early posttransplant tryptophan metabolism predicts long-term outcome of human kidney transplantation. Transplantation, 99, e97–e104.

    Article  CAS  PubMed  Google Scholar 

  • Viant, M. R., Rosenblum, E. S., & Tjeerdema, R. S. (2003). NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environmental Science and Technology, 37, 4982–4989.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, M., Brennan, L., Malthouse, J., Roche, H., & Gibney, M. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. American Journal of Clinical Nutrition, 84, 531–539.

    CAS  PubMed  Google Scholar 

  • Wei, L., Liao, P., Wu, H., et al. (2009). Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy. Toxicological and Applied Pharmacology, 234, 314–325.

    Article  CAS  Google Scholar 

  • Wider, G., Baumann, R., Nagayama, K., Ernst, R. R., & Wuthrich, K. (1981). Strong spin-spin coupling in the two-dimentional J-resolved 360-MHz spectra of the common amino acids. Journal of Magnetic Resonance, 42, 73–87.

    CAS  Google Scholar 

  • Williams, R. E., Jacobson, M., & Lock, E. A. (2003). 1H NMR pattern recognition and 31P NMR studies with d-serine in rat urine and kidney, time- and dose-related metabolic effects. Chemical Research in Toxicology, 16, 1207–1216.

    Article  CAS  PubMed  Google Scholar 

  • Williams, R. E., & Lock, E. A. (2004). d-Serine-induced nephrotoxicity: Possible interaction with tyrosine metabolism. Toxicology, 201, 231–238.

    Article  CAS  PubMed  Google Scholar 

  • Williams, R. E., Major, H., Lock, E. A., Lenz, E. M., & Wilson, I. D. (2005). d-Serine-induced nephrotoxicity: A HPLC-TOF/MS-based metabolomics approach. Toxicology, 207, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Wise, E., & Elwyn, D. (1966). Hyperaminoaciduria in rats following d-serine administration. Proceedings of the Society of Experimental Biology and Medicine, 121, 982–986.

    Article  CAS  Google Scholar 

  • Wittner, M., Stefano, D., Wangemann, P., & Greger, R. (1991). How do loop diuretics act? Drugs, 41, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Won, A. J., Kim, S., Kim, Y. G., et al. (2016). Discovery of urinary metabolmic biomarkers for early detection of acute kidney injury. Molecular BioSystems, 12, 133–144.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Yang, S., Cai, S., Dong, J., Li, X., & Chen, Z. (2010). Identification of biochemical changes in lactovegetarian urine using 1H NMR spectroscopy and pattern recognition. Analytical and Bioanalytical Chemistry, 396, 1451–1463.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Zhang, J., Dong, J., Cai, S., Yang, J., & Chen, Z. (2009). Metabolomics studies and intact hepatic and renal cortical tissues from diabetic db/db mice using high-resolution magic-angle spinning 1H NMR spectroscopy. Analytical and Bioanalytical Chemistry, 393, 1657–1668.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Li, C., Nie, X., et al. (2007). Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis. Journal of Proteome Research, 6, 2605–2614.

    Article  CAS  PubMed  Google Scholar 

  • Yap, I. K. S., Clayton, T. A., Tang, H., et al. (2006). An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin Allyl Formate. Journal of Proteome Research, 5, 2675–2684.

    Article  CAS  PubMed  Google Scholar 

  • Zuppi, C., Messana, I., Forni, F., Ferrari, F., Cristina, R., & Giardina, B. (1998). Influence of feeding on metabolite excretion evidenced by urine 1H NMR spectral profiles: A comparison between subjects living in Rome and subjects living at arctic latitudes (Svaldbard). Clinica Chimica Acta, 278, 75–79.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ohio Third Frontier, Research Challenge Fund (NVR), and funds provided by the Air Force Research Laboratory, 711th Human Performance Wing, Human Effectiveness Directorate, Wright-Patterson Air Force Base, OH (DRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas V. Reo.

Ethics declarations

Conflict of interest

None.

Research involving Human and animal rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Informed consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibomana, I., DelRaso, N.J., Mattie, D. et al. Furosemide enhances the sensitivity of urinary metabolomics for assessment of kidney function. Metabolomics 13, 24 (2017). https://doi.org/10.1007/s11306-017-1162-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-017-1162-6

Keywords

Navigation