Skip to main content

Advertisement

Log in

Volatile metabolic diversity of Klebsiella pneumoniae in nutrient-replete conditions

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Microorganisms catabolize carbon-containing compounds in their environment during growth, releasing a subset of metabolic byproducts as volatile compounds. However, the relationship between growth media and the production of volatile compounds has been largely unexplored to-date.

Objectives

To assess the core and media-specific components of the Klebsiella pneumoniae volatile metabolome via growth in four in vitro culture media.

Methods

Headspace volatiles produced by cultures of K. pneumoniae after growth to stationary phase in four rich media (brain heart infusion broth, lysogeny broth, Mueller-Hinton broth, and tryptic soy broth) were analyzed using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS). Differences in the composition of headspace volatiles as a function of growth media were assessed using hierarchical clustering analysis (HCA) and principal component analysis (PCA).

Results

A total of 365 volatile compounds were associated with the growth of K. pneumoniae across all media, of which 36 (10%) were common to all growth media, and 148 (41%) were specific to a single medium. In addition, utilizing all K. pneumoniae-associated volatile compounds, strains clustered as a function of growth media, demonstrating the importance of media in determining the metabolic profile of this organism.

Conclusion

K. pneumoniae produces a core suite of volatile compounds across all growth media studied, although the volatile metabolic signature of this organism is fundamentally media-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bean, H. D., Dimandja, J. M., & Hill, J. E. (2012). Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 901, 41–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 57(1), 289–300.

    Google Scholar 

  • Boots, A. W., Smolinska, A., Van Berkel, J. J., Fijten, R. R., Stobberingh, E. E., Boumans, M. L., Moonen, E. J., Wouters, E. F., Dallinga, J. W., & Van Schooten, F. J. (2014). Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. Journal of Breath Research, 8(2), 027106.

    Article  CAS  PubMed  Google Scholar 

  • Borer, A., Saidel-Odes, L., Riesenberg, K., Eskira, S., Peled, N., Nativ, R., Schlaeffer, F., & Sherf, M. (2009). Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infection Control and Hospital Epidemiology: The Official Journal of the Society of Hospital Epidemiologists of America, 30(10), 972–976.

    Article  Google Scholar 

  • Bos, L. D., Sterk, P. J., & Schultz, M. J. (2013). Volatile metabolites of pathogens: a systematic review. PLoS Pathogens, 9(5), e1003311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruins, M., Bos, A., Petit, P. L., Eadie, K., Rog, A., Bos, R., Van Ramshorst, G. H., & Van Belkum, A. (2009). Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 28(7), 775–780.

    Article  CAS  Google Scholar 

  • Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A., & Brisse, S. (2005). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. Journal of Clinical Microbiology, 43(8), 4178–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1 H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290.

    Article  CAS  PubMed  Google Scholar 

  • Elgaali, H., Hamilton-Kemp, T. R., Newman, M. C., Collins, R. W., Yu, K., & Archbold, D. D. (2002). Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria. Journal of Basic Microbiology, 42(6), 373–380.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Zou, Y., Wang, Y., Wang, F., Lang, L., Wang, P., Zhou, Y., & Ying, K. (2016). Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. Journal of Breath Research, 10(2), 027102.

    Article  PubMed  Google Scholar 

  • Gisbert, J. P., & Pajares, J. M. (2004). Review article: 13 C-urea breath test in the diagnosis of Helicobacter pylori infection – a critical review. Alimentary Pharmacology and Therapeutics, 20(10), 1001–1017.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch, E. B., Chang, K. T., Zucchi, P. C., Francoeur, D. N., Ledesma, K. R., Tam, V. H., & Lasco, T. M. (2014). An evaluation of multiple phenotypic screening methods for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 20(3), 224–227.

    Article  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.

    Article  Google Scholar 

  • Julak, J., Prochazkova-Francisci, E., Stranska, E., & Rosova, V. (2003). Evaluation of exudates by solid phase microextraction-gas chromatography. Journal of microbiological methods, 52(1), 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Julak, J., Stranska, E., Prochazkova-Francisci, E., & Rosova, V. (2000). Blood cultures evaluation by gas chromatography of volatile fatty acids. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 6(3), 605–610.

    CAS  Google Scholar 

  • Junger, M., Vautz, W., Kuhns, M., Hofmann, L., Ulbricht, S., Baumbach, J. I., Quintel, M., & Perl, T. (2012). Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Applied Microbiology and Biotechnology, 93(6), 2603–2614.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiviranta, H., Tuomainen, A., Reiman, M., Laitinen, S., Liesivuori, J., & Nevalainen, A. (1998). Qualitative identification of volatile metabolites from two fungi and three bacteria species cultivated on two media. Central European Journal of Public Health, 6(4), 296–299.

    CAS  PubMed  Google Scholar 

  • Koo, S., Thomas, H. R., Daniels, S. D., Lynch, R. C., Fortier, S. M., Shea, M. M., Rearden, P., Comolli, J. C., Baden, L. R., & Marty, F. M. (2014). A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clinical Infectious Diseases: an Official Publication of The Infectious Diseases Society of America, 59(12), 1733–1740.

    Article  Google Scholar 

  • Kovats, E. (1958). Gas-Chromatographische Charakterisierung Organischer Verbindungen 0.1. Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helvetica Chimica Acta, 41(7), 1915–1932.

    Article  CAS  Google Scholar 

  • Lechner, M., Fille, M., Hausdorfer, J., Dierich, M. P., & Rieder, J. (2005). Diagnosis of bacteria in vitro by mass spectrometric fingerprinting:a pilot study. Current Microbiology, 51(4), 267–269.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. J., Demilo, A. B., Moreno, D. S., & Martinez, A. J. (1995). Analysis of the volatile components of a bacterial fermentation that is attractive to the mexican fruit-fly, Anastrepha ludens. Journal of Agricultural and Food Chemistry, 43(5), 1348–1351.

    Article  CAS  Google Scholar 

  • Liu, M., Durfee, T., Cabrera, J. E., Zhao, K., Jin, D. J., & Blattner, F. R. (2005). Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. The Journal of Biological Chemistry, 280(16), 15921–15927.

    Article  CAS  PubMed  Google Scholar 

  • Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether One of 2 Random Variables Is Stochastically Larger Than the Other. The Annals of Mathematical Statistics, 18(1), 50–60.

    Article  Google Scholar 

  • Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11(4), 589–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rees, C. A., Franchina, F. A., Nordick, K. V., Kim, P. J., & Hill, J. E. (2016a). Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. Journal of Applied Microbiology. doi:10.1111/jam.13372.

  • Rees, C. A., Smolinska, A., & Hill, J. E. (2016b). The volatile metabolome of Klebsiella pneumoniae in human blood. Journal of Breath Research, 10(2), 027101.

  • Robacker, D. C., & Bartelt, R. J. (1997). Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. Journal of Chemical Ecology, 23(12), 2897–2915.

    Article  CAS  Google Scholar 

  • Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: the smell of small organisms. Natural Product Reports, 24(4), 814–842.

    Article  CAS  PubMed  Google Scholar 

  • Scott-Thomas, A. J., Syhre, M., Pattemore, P. K., Epton, M., Laing, R., Pearson, J., & Chambers, S. T. (2010). 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulmonary Medicine, 10, 56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethi, S., Nanda, R., & Chakraborty, T. (2013). Clinical application of volatile organic compound analysis for detecting infectious diseases. Clinical Microbiology Reviews, 26(3), 462–475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shnayderman, M., Mansfield, B., Yip, P., Clark, H. A., Krebs, M. D., Cohen, S. J., Zeskind, J. E., Ryan, E. T., Dorkin, H. L., Callahan, M. V., Stair, T. O., Gelfand, J. A., Gill, C. J., Hitt, B., & Davis, C. E. (2005). Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Analytical Chemistry, 77(18), 5930–5937.

    Article  CAS  PubMed  Google Scholar 

  • Storer, M. K., Hibbard-Melles, K., Davis, B., & Scotter, J. (2011). Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS). Journal of Microbiological Methods, 87(1), 111–113.

    Article  CAS  PubMed  Google Scholar 

  • Syhre, M., & Chambers, S. T. (2008). The scent of Mycobacterium tuberculosis. Tuberculosis, 88(4), 317–323.

  • Syhre, M., Manning, L., Phuanukoonnon, S., Harino, P., & Chambers, S. T. (2009). The scent of Mycobacterium tuberculosis–part II breath. Tuberculosis, 89(4), 263–266.

    Article  CAS  PubMed  Google Scholar 

  • Tait, E., Perry, J. D., Stanforth, S. P., & Dean, J. R. (2014). Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Journal of Chromatographic Science, 52(4), 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Zechman, J. M., Aldinger, S., & Labows, J. N. Jr. (1986). Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. Journal of Chromatography, 377, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Bean, H. D., Jimenez-Diaz, J., & Hill, J. E. (2013a). Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. Journal of Applied Physiology (Bethesda, Md. : 1985), 114(11), 1544–1549.

  • Zhu, J., Bean, H. D., Wargo, M. J., Leclair, L. W., & Hill, J. E. (2013b). Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints. Journal of Breath Research, 7(1), 016003.

Download references

Acknowledgements

This work was supported by National Institutes of Health grant R21 AI121076 to JE Hill and Lennart KA Lundblad. Dartmouth College holds an Institutional Program Unifying Population and Laboratory Based Sciences award from the Burroughs Wellcome Fund, and CA Rees was supported by this grant (Grant#1014106). KV Nordick was supported by the Paul K. Richter and Evalyn E. Cook Richter Memorial Fund awarded through Dartmouth College. AE Lewis was supported by the Presidential Scholarship awarded through Dartmouth College. We thank Mavra Nasir and Theodore R Mellors for their aid in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane E. Hill.

Ethics declarations

Conflict of interest

All authors report no potential conficts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 126 KB)

Supplementary material 2 (PDF 356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rees, C.A., Nordick, K.V., Franchina, F.A. et al. Volatile metabolic diversity of Klebsiella pneumoniae in nutrient-replete conditions. Metabolomics 13, 18 (2017). https://doi.org/10.1007/s11306-016-1161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1161-z

Keywords

Navigation