Skip to main content

Advertisement

Log in

High prevalence of taurodontism in North China and its relevant factors: a retrospective cohort study

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to investigate the prevalence and relevant factors of taurodontism in North China.

Methods

We retrospectively analysed the cone beam computed tomography (CBCT) of 1025 patients (496 male and 529 female) aged between 10 and 59 years. The crown-body/root (CB/R) ratios of the maxillary and mandibular molars were measured. The prevalence of hypotaurodontism, mesotaurodontism, and hypertaurodontism was then calculated and the incidence of taurodontism along with its relevant factors, was evaluated.

Results

The overall rate of taurodontism in North China was as high as 78.9%. If the third molars (opsigenes) were excluded, which have a big morphological variation from each other, the rate was 52.4%. The mean CB/R ratio of taurodontism differs from tooth position: maxillary mandibular third molars > maxillary third molars > maxillary second molars > maxillary first molars > mandibular second molars > mandibular first molars (P < 0.05). In addition, the 1025 patients were divided into different age groups, and it was found that the mean CB/R ratio decreased with age (P < 0.05). Moreover, the CB/R ratio of the mandibular first and second molars in female patients was higher than males (P < 0.05).

Conclusion

This study revealed that taurodontism is widely prevalent in North China. The incidence of taurodontism increases the closer the tooth is to the back end of the dental arch, and quite a few of the maxillary and mandibular third molars teeth have tapered roots. And the taurodontism is decreased by age, as there were more affected female than male patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keith A. Problems relating to the teeth of the earlier form of prehistoric man. Proc R Soc Med. 1913;6:103–24. https://doi.org/10.1136/bmj.2.2741.103-d.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shaw J. Taurodont teeth in South African races. J Anat. 1928;62(Pt4):476–98. https://doi.org/10.1002/ar.1090390211.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Seow WK, Lai PY. Association of taurodontism with hypodontia: a controlled study. Pediatr Dent. 1989;11(3):214–9 (PMID: 2638007).

    PubMed  Google Scholar 

  4. Gomes RR, Habckost CD, Junqueira LG, Leite AF, Figueiredo PT, Paula LM, Acevedo AC. Taurodontism in Brazilian patients with tooth agenesis and first and second-degree relatives: a case-control study. Arch Oral Biol. 2012;57(8):1062–9. https://doi.org/10.1016/j.archoralbio.2012.04.006.

    Article  PubMed  Google Scholar 

  5. Satir S. Determination of mandibular morphology in a TURKISH population with down syndrome using panoramic radiography. BMC Oral Health. 2019;19(1):36. https://doi.org/10.1186/s12903-019-0722-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cuoghi OA, Topolski F, Perciliano de Faria L, Occhiena CM, Ferreira ND, Ferlin CR, Rogério de Mendonça M. Prevalence of dental anomalies in permanent dentition of brazilian individuals with down syndrome. Open Dent J. 2016;10:469–73. https://doi.org/10.2174/1874210601610010469.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Castilla AS, Hernández RM, Rodríguez JMA. The Importance of Clinical Genotype in Patients with Klinefelter Syndrome A Genetic Disorder Asociated to Taurodontism. J Dis. 2015;2(2):12–22. https://doi.org/10.18488/journal.99/2015.2.2/99.2.12.22.

    Article  Google Scholar 

  8. Whitehouse LLE, Smith CEL, Poulter JA, Brown CJ, Patel A, Lamb T, Brown LR, O’Sullivan EA, Mitchell RE, Berry IR, Charlton R, Inglehearn CF, Mighell AJ. Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis. 2019;25(1):182–91. https://doi.org/10.1111/odi.12955.

    Article  PubMed  Google Scholar 

  9. Jain P, Kaul R, Saha S, Sarkar S. Tricho-dento-osseous syndrome and precocious eruption. J Clin Exp Dent. 2017;9(3):e494–7. https://doi.org/10.4317/jced.53348.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tomona N, Smith AC, Guadagnini JP, Hart TC. Craniofacial and dental phenotype of smith-magenis syndrome. Am J Med Genet A. 2006;140(23):2556–61. https://doi.org/10.1002/ajmg.a.31371.

    Article  PubMed  Google Scholar 

  11. Andersson EM, Axelsson S, Gjølstad LF, Storhaug K. Taurodontism: a minor diagnostic criterion in laurence-moon/bardet-biedl syndromes. Acta Odontol Scand. 2013;71(6):1671–4. https://doi.org/10.3109/00016357.2013.794389.

    Article  PubMed  Google Scholar 

  12. Wright JT, Gantt DG. Epidermolysis bullosa : associated with enamel hypoplasia and taurodontism. J Oral Pathol Med. 1983;12(2):73–83. https://doi.org/10.1111/j.1600-0714.1983.tb00320.x.

    Article  Google Scholar 

  13. Melo DE, FILHO MR, DosSantos LA. Prevalence and association between taurodontism and non-syndromic cleft lip and palate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2017;124(2):122. https://doi.org/10.1016/j.oooo.2017.05.316.

    Article  Google Scholar 

  14. Weckwerth GM, Santos CF, Brozoski DT, Centurion BS, Pagin O, Lauris JR, Carvalho IM, Neves LT. Taurodontism, root dilaceration, and tooth transposition: a radiographic study of a population with nonsyndromic cleft lip and/or palate. Cleft Palate Craniofac J. 2016;53(4):404–12. https://doi.org/10.1597/14-299.

    Article  PubMed  Google Scholar 

  15. Melo Filho MR, Nogueira dos Santos LA, Barbosa Martelli DR, Silveira MF, Esteves da Silva M, de Barros LM, Coletta RD, Martelli-Júnior H. Taurodontism in patients with nonsyndromic cleft lip and palate in a Brazilian population: a case control evaluation with panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(6):744–50. https://doi.org/10.1016/j.oooo.2015.08.005.

    Article  PubMed  Google Scholar 

  16. Hu JC, Simmer JP. Developmental biology and genetics of dental malformations. Orthod Craniofac Res. 2007;10(2):45–52. https://doi.org/10.1111/j.1601-6343.2007.00384.x.

    Article  PubMed  Google Scholar 

  17. Desai V. Oculo-auriculo-vertebral spectrum with radial defects, a bifid condyle and taurodontism: a case report. Dent Med Probl. 2019;56(4):427–31. https://doi.org/10.17219/dmp/110234.

    Article  PubMed  Google Scholar 

  18. Peña-Cardelles JF, Domínguez-Medina DA, Cano-Durán JA, Ortega-Concepción D, Cebrián JL. Oral manifestations of ellis-van creveld syndrome. A rare case report. J Clin Exp Dent. 2019;11(3):e290–5. https://doi.org/10.4317/jced.55543.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hasan M. Taurodontism part 1: history, aetiology and molecular signalling, epidemiology and classification. Dent Update. 2019;46(2):158–65. https://doi.org/10.12968/denu.2019.46.2.158.

    Article  Google Scholar 

  20. Dong J, Amor D, Aldred MJ, Gu T, Escamilla M, MacDougall M. DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism. Am J Med Genet A. 2005;133A(2):138–41. https://doi.org/10.1002/ajmg.a.30521.

    Article  PubMed  Google Scholar 

  21. Wright JT, Hong SP, Simmons D, Daly B, Uebelhart D, Luder HU. DLX3 c.561_562delCT mutation causes attenuated phenotype of tricho-dento-osseous syndrome. Am J Med Genet A. 2008;146A(3):343–9. https://doi.org/10.1002/ajmg.a.32132.

    Article  PubMed  Google Scholar 

  22. Turan S, Aydin C, Bereket A, Akcay T, Güran T, Yaralioglu BA, Bastepe M, Jüppner H. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone. 2010;46(2):402–9. https://doi.org/10.1016/j.bone.2009.09.016.

    Article  PubMed  Google Scholar 

  23. Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ. Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem. 2004;279(18):19141–8. https://doi.org/10.1074/jbc.M400490200.

    Article  PubMed  Google Scholar 

  24. Steele-Perkins G, Butz KG, Lyons GE, Zeichner-David M, Kim HJ, Cho MI, Gronostajski RM. Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol. 2003;23(3):1075–84. https://doi.org/10.1128/MCB.23.3.1075-1084.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fons Romero JM, Star H, Lav R, Watkins S, Harrison M, Hovorakova M, Headon D, Tucker AS. The impact of the eda pathway on tooth root development. J Dent Res. 2017;96(11):1290–7. https://doi.org/10.1177/0022034517725692.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kantaputra PN, Kaewgahya M, Hatsadaloi A, Vogel P, Kawasaki K, Ohazama A, Ketudat Cairns JR. GREMLIN 2 mutations and dental anomalies. J Dent Res. 2015;94(12):1646–52. https://doi.org/10.1177/0022034515608168.

    Article  PubMed  Google Scholar 

  27. Donald PM, Arora A, George R. Nonsyndromic form of oligodontia in a Chinese male patient: a rare case report. J Int Oral Health. 2017;9(4):180–2. https://doi.org/10.4103/jioh.jioh_117_17.

    Article  Google Scholar 

  28. Merametdjian L, Prud’Homme T, Le Caignec C, Isidor B, Lopez-Cazaux S. Oro-dental phenotype in patients with RUNX2 duplication. Eur J Med Genet. 2019;62(2):85–9. https://doi.org/10.1016/j.ejmg.2018.05.019.

    Article  PubMed  Google Scholar 

  29. Gowans LJJ, Cameron-Christie S, Slayton RL, Busch T, Romero-Bustillos M, Eliason S, Sweat M, Sobreira N, Yu W, Kantaputra PN, Wohler E, Adeyemo WL, Lachke SA, Anand D, Campbell C, Drummond BK, Markie DM, van Vuuren WJ, van Vuuren LJ, Casamassimo PS, Ettinger R, Owais A, van Staden I, Amendt BA, Adeyemo AA, Murray JC, Robertson SP, Butali A. Microdontia and Dens-Invaginatus. Front Genet. 2019;10:800. https://doi.org/10.3389/fgene.2019.00800.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang J, Wang SK, Choi M, Reid BM, Hu Y, Lee YL, Herzog CR, Kim-Berman H, Lee M, Benke PJ, Lloyd KC, Simmer JP, Hu JC. Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Mol Genet Genomic Med. 2015;3(1):40–58. https://doi.org/10.1002/mgg3.111.

    Article  PubMed  Google Scholar 

  31. Kantaputra PN, Hutsadaloi A, Kaewgahya M, Intachai W, German R, Koparal M, Leethanakul C, Tolun A, Ketudat Cairns JR. WNT10B mutations associated with isolated dental anomalies. Clin Genet. 2018;93(5):992–9. https://doi.org/10.1111/cge.13218.

    Article  PubMed  Google Scholar 

  32. Mostowska A, Biedziak B, Zadurska M, Bogdanowicz A, Olszewska A, Cieślińska K, Firlej E, Jagodziński pp. GREM2 nucleotide variants and the risk of tooth agenesis. Oral Dis. 2018;24(4):591–9. https://doi.org/10.1111/odi.12793.

    Article  PubMed  Google Scholar 

  33. Reichart P, Quast U. Mandibular infection as a possible aetiological factor in taurodontism. J Dent. 1975;3(5):198–202. https://doi.org/10.1016/0300-5712(75)90121-9.

    Article  PubMed  Google Scholar 

  34. Darwazeh AM, Hamasha AA, Pillai K. Prevalence of taurodontism in Jordanian dental patients. Dentomaxillofac Radiol. 1998;27(3):163–5. https://doi.org/10.1038/sj/dmfr/4600342.

    Article  PubMed  Google Scholar 

  35. MacDonald-Jankowski DS, Li TT. Taurodontism in a young adult Chinese population. Dentomaxillofac Radiol. 1993;22(3):140–4. https://doi.org/10.1259/dmfr.22.3.8299833.

    Article  PubMed  Google Scholar 

  36. Bürklein S, Breuer D, Schäfer E. Prevalence of taurodont and pyramidal molars in a German population. J Endod. 2011;37(2):158–62. https://doi.org/10.1016/j.joen.2010.10.010.

    Article  PubMed  Google Scholar 

  37. David MD. Taurodontism. Oral Radiol. 2020;36(2):129–32. https://doi.org/10.1007/s11282-019-00386-1.

    Article  Google Scholar 

  38. Parupalli K, Solomon RV, Karteek BS, Polasa S. Application of cone-beam computed tomography in the analysis and management of intricate internal anatomy of hyper and mesotaurodontic teeth. J Conserv Dent. 2020;23(2):211–4. https://doi.org/10.4103/JCD.JCD_175_19.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jabali AH, Chourasia HR, Wasli AS, et al. Taurodontism in maxillary and mandibular molars using cone beam computed tomography in a dental center in Saudi Arabia. Ann Saudi Med. 2021;41(4):232–7. https://doi.org/10.5144/0256-4947.2021.232.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aricioğlu B, Tomrukçu DN, Köse TE. Taurodontism and C-shaped anatomy: is there an association? Oral Radiol. 2021;37(3):443–51. https://doi.org/10.1007/s11282-020-00476-5.

    Article  PubMed  Google Scholar 

Download references

Funding

Xingtai Science and Technology Project, 2019ZC230, Yunmeng Da

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunmeng Da.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da, Y., Wang, C., Zhang, L. et al. High prevalence of taurodontism in North China and its relevant factors: a retrospective cohort study. Oral Radiol 39, 266–274 (2023). https://doi.org/10.1007/s11282-022-00630-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-022-00630-1

Keywords

Navigation