Skip to main content
Log in

Design of Linear and Circular Antenna Arrays for Side Lobe Reduction Using a Novel Modified Sparrow Search Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A high gain antenna array with reduced side lobe level (SLL) needs to be optimized and designed to meet the requirement of modern wireless communication systems. To achieve this goal, a newly developed natural heuristic algorithm namely sparrow search algorithm (SSA) and its modification are introduced and utilized to the field of electromagnetic optimization for the first time in this paper. Simulation results over several different examples of the linear antenna array (LAA) and circular antenna array (CAA) design problem have been presented to demonstrate the effectiveness and superiority of the modified SSA. The design results obtained by modified SSA showed greater advantages than those certain classical and well-known algorithms like particle swarm optimization (PSO), whale optimization algorithm (WOA) and grasshopper optimization algorithm (GOA), in a statistically meaningful way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Roy, G. G., Das, S., Chakraborty, P., & Suganthan, P. N. (2010). Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm. IEEE Transactions on antennas and propagation, 59(1), 110–118.

    Article  Google Scholar 

  2. Cheng, D. K. (1971). Optimization techniques for antenna arrays. Proceedings of the IEEE, 59(12), 1664–1674.

    Article  Google Scholar 

  3. Recioui, A., & Bentarzi, H. (2013). Capacity optimization of MIMO wireless communication systems using a hybrid genetic-taguchi algorithm. Wireless personal communications, 71(2), 1003–1019.

    Article  Google Scholar 

  4. Ioannides, P., & Balanis, C. A. (2005). Uniform circular arrays for smart antennas. IEEE Antennas and propagation magazine, 47(4), 192–206.

    Article  Google Scholar 

  5. Gupta, P., & Gupta, V. (2021). Thinned 8× 8 planar antenna array with reduced side lobe levels for 5G applications. Wireless Personal Communications, 1–17.

  6. Haupt, R. L. (1994). Thinned arrays using genetic algorithms. IEEE Transactions on Antennas and Propagation, 42(7), 993–999.

    Article  Google Scholar 

  7. Rattan, M., Patterh, M. S., & Sohi, B. S. (2009). Optimization of circular antenna arrays of isotropic radiators using simulated annealing. International Journal of Microwave and Wireless Technologies, 1(5), 441.

    Article  Google Scholar 

  8. Abu-Al-Nadi, D. I., Ismail, T. H., Al-Tous, H., & Mismar, M. J. (2012). Design of linear phased array for interference suppression using array polynomial method and particle swarm optimization. Wireless Personal Communications, 63(2), 501–513.

    Article  Google Scholar 

  9. Singh, U., & Rattan, M. (2014). Design of linear and circular antenna arrays using cuckoo optimization algorithm. Progress In Electromagnetics Research, 46, 1–11.

    Article  Google Scholar 

  10. Zare, A. S., & Baghaiee, S. (2015). Application of ant colony optimization algorithm to pattern synthesis of uniform circular antenna array. Applied Computational Electromagnetics Society Journal, 30(8), 810–818.

    Google Scholar 

  11. Dib, N. I. (2016). Design of linear antenna arrays with low side lobes level using symbiotic organisms search. Progress In Electromagnetics Research, 68, 55–71.

    Article  Google Scholar 

  12. Sun, G., Liu, Y., Liang, S., Wang, A., & Zhang, Y. (2017). Beam pattern design of circular antenna array via efficient biogeography-based optimization. AEU-International Journal of Electronics and Communications, 79, 275–285.

    Google Scholar 

  13. Grewal, N. S., Rattan, M., & Patterh, M. S. (2017). A non-uniform circular antenna array failure correction using firefly algorithm. Wireless Personal Communications, 97(1), 845–858.

    Article  Google Scholar 

  14. Das, A., Mandal, D., Ghoshal, S. P., & Kar, R. (2019). Moth flame optimization based design of linear and circular antenna array for side lobe reduction. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(1), e2486.

    Article  Google Scholar 

  15. Sun, G., Liu, Y., Li, H., Liang, S., Wang, A., & Li, B. (2018). An antenna array sidelobe level reduction approach through invasive weed optimization. International Journal of Antennas and Propagation2018.

  16. Banerjee, S., & Mandal, D. (2018). Array pattern optimization for steerable circular isotropic antenna array using cat swarm optimization algorithm. Wireless Personal Communications, 99(3), 1169–1194.

    Article  Google Scholar 

  17. Almagboul, M. A., Shu, F., Qian, Y., Zhou, X., Wang, J., & Hu, J. (2019). Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null. AEU-International Journal of Electronics and Communications, 111, 152854.

    Google Scholar 

  18. Xue, J., & Shen, B. (2020). A novel swarm intelligence optimization approach: Sparrow search algorithm. Systems Science & Control Engineering, 8(1), 22–34.

    Article  Google Scholar 

  19. Li, Y., Wang, S., & Chen, Q. (2020). Comparative study of several new swarm intelligence optimization algorithms. Computer Engineering and Applications, 56(22), 1–12.

    Google Scholar 

  20. Wang, Y., Wang, H., Wen, J., Lun, Y., & Wu, J. (2020). Obstacle avoidance of UAV based on neural networks and interfered fluid dynamical system. In 2020 3rd International Conference on Unmanned Systems (ICUS) (pp. 1066–1071). IEEE.

  21. Xing, Z., Yi, C., Lin, J., & Zhou, Q. (2021). Multi-component fault diagnosis of wheelset-bearing using shift-invariant impulsive dictionary matching pursuit and sparrow search algorithm. Measurement, 178, 109375.

    Article  Google Scholar 

  22. Wu, Y., Zhang, Z., Xiao, R., Jiang, P., Dong, Z., & Deng, J. (2021). Operation state identification method for converter transformers based on vibration detection technology and deep belief network optimization algorithm. Actuators, 2021(10), 56.

    Article  Google Scholar 

  23. Liu, T., Yuan, Z., Wu, L., & Badami, B. (2021). Optimal brain tumor diagnosis based on deep learning and balanced sparrow search algorithm. International Journal of Imaging Systems and Technology., 31(4), 1921–1935.

    Article  Google Scholar 

  24. Zhang, C., & Ding, S. (2021). A stochastic configuration network based on chaotic sparrow search algorithm. Knowledge-Based Systems, 220, 106924.

    Article  Google Scholar 

  25. Wang, P., Zhang, Y., & Yang, H. (2021). Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm. Computational Intelligence and Neuroscience2021.

  26. Jovanović, A., Lazović, L., & Rubežić, V. (2016). Adaptive array beamforming using a chaotic beamforming algorithm. International Journal of Antennas and Propagation2016.

  27. Zang, H., Huang, H., & Chai, H. (2019). Homogeneous method for the quadratic polynomial chaotic system. Journal of Electronics and Information Technology, 41(07), 1618–1624.

    Google Scholar 

  28. Yang, H., Chen, T., & Huang, N. J. (2019). An adaptive bird swarm algorithm with irregular random flight and its application. Journal of Computational Science, 35, 57–65.

    Article  MathSciNet  Google Scholar 

  29. Cheng, S., & Shi, Y. (2020). Experimental study on boundary constraints handling in particle swarm optimization. In Handbook of Research on Advancements of Swarm Intelligence Algorithms for Solving Real-World Problems (pp. 217–246). IGI Global.

  30. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.

  31. Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) (pp. 69–73). IEEE.

  32. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software, 95, 51–67.

    Article  Google Scholar 

  33. Saremi, S., Mirjalili, S., & Lewis, A. (2017). Grasshopper optimisation algorithm: Theory and application. Advances in Engineering Software, 105, 30–47.

    Article  Google Scholar 

  34. Gross, F. B. (2015). Smart Antennas with MATLAB®. McGraw-Hill Education.

  35. Saxena, P., & Kothari, A. (2016). Optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm. International Journal of Antennas and Propagation2016.

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

QL Conceptualization, Methodology, Formal analysis and investigation, Writing—original draft preparation, Writing—review and editing. HW Conceptualization, Methodology, Writing—review and editing. BC Methodology, Supervision, Resources.

Corresponding author

Correspondence to Huaning Wu.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Wu, H. & Chen, B. Design of Linear and Circular Antenna Arrays for Side Lobe Reduction Using a Novel Modified Sparrow Search Algorithm. Wireless Pers Commun 130, 1045–1069 (2023). https://doi.org/10.1007/s11277-023-10319-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10319-1

Keywords

Navigation