Skip to main content

Advertisement

Log in

Energy Efficient Cognitive Radio Sensor Networks with Team-Based Hybrid Sensing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The massive growth in modern wireless technologies and devices has resulted in increase in spectrum demands and energy consumption of wireless sensor network (WSN). To overcome the spectral scarcity and to meet the energy requirements, a cognitive radio enabled WSN with an energy efficient medium access control protocol is required. However, existing approaches utilize either reactive sense and avoid approach or proactive spectrum access to reconfigure spectrum usage based on observations. In this paper, a team-based hybrid sensing method is proposed for cognitive radio sensor networks (CRSNs), which combines both reactive sensing and proactive sensing in a team based approach. Here, the sensor nodes are grouped into teams based on the detection probability of each primary user (PU) channels and each team senses a PU channel. To avoid sensing overheads and to limit energy consumption, a node with best detection probability \((P_d)\) called sensing representative node (SRN) is involved in reactive sensing. Dynamic channel allocation to the secondary users (SUs) with significantly increased throughput and reduced energy consumption are achieved by using proactive sensing. Proactive sensing predicts the primary user (PU) occupancy using SRNs and allows the SU transmission without any hindrance. Both simulation and software defined radio based hardware results show that, the proposed Hybrid Sensing improves the energy efficiency of CRSNs by \(11\%\) over the existing sensing methods without degrading its sensing accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 4.

    Article  Google Scholar 

  2. Yadav, R., Varma, S., & Malaviya, N. (2009). A survey of MAC protocols for wireless sensor networks. UbiCC Journal, 4, 3.

    Google Scholar 

  3. Chen, K.-C., & Prasad, R. (2009). Cognitive radio networks (pp. 183–192). Hoboken: Wiley.

    Book  Google Scholar 

  4. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 2.

    Article  Google Scholar 

  5. Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Networks, 23, 340.

    Article  Google Scholar 

  6. Joshi, G. P., Nam, S. Y., & Kim, S. W. (2013). Cognitive radio wireless sensor networks: Applications, challenges and research trends. Sensors, 13, 9.

    Article  Google Scholar 

  7. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey in spectrum management in cognitive radio networks. IEEE Communications Magazine, 46, 4.

    Article  Google Scholar 

  8. Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communication Surveys and Tutorials, 17, 2.

    Google Scholar 

  9. Yang, L., Cao, L., & Zheng, H. (2008). Proactive channel access in dynamic spectrum networks. Physical Communication, 1, 2.

    Article  Google Scholar 

  10. Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1–16.

    Article  Google Scholar 

  11. Shah, G. A., & Akan, O. B. (2015). Cognitive adaptive medium access control in cognitive radio sensor networks. Transactions on Vehicular Technology, 64, 2.

    Article  Google Scholar 

  12. Aijaz, A., Ping, S., Akhavan, M. R., & Aghvami, A.-H. (2014). CRB-MAC: A receiver-based MAC protocol for cognitive radio equipped smart grid sensor networks. IEEE Sensors Journal, 14, 12.

    Article  Google Scholar 

  13. Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2013). A novel sensing nodes and decision node selection method for energy efficiency of cooperative spectrum sensing in cognitive sensor networks. IEEE Sensors Journal, 13, 5.

    Article  Google Scholar 

  14. Kong, F., Cho, J., & Lee, B. (2017). Optimizing spectrum sensing time with adaptive sensing interval for energy-efficient CRSNs. IEEE Sensors Journal, 17, 22.

    Article  Google Scholar 

  15. Sengottuvelan, S., Ansari, J., Mahonen, P., Venkatesh, T. G., & Petrova, M. (2017). Channel selection algorithm for cognitive radio networks with heavy-tailed idle times. IEEE Transactions on Mobile Computing, 16, 5.

    Article  Google Scholar 

  16. Liu, Y., Xie, S., Rong, Y., Zhang, Y., & Yuen, C. (2013). An efficient MAC protocol with selective grouping and cooperative sensing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 62, 8.

    Google Scholar 

  17. Debroy, S., De, S., & Chatterjee, M. (2014). Contention based multichannel MAC protocol for distributed cognitive radio networks. IEEE Transactions on Mobile Computing, 13, 12.

    Article  Google Scholar 

  18. Thilina, K. G. M., Hossain, E., & Kim, D. I. (2016). A dynamic common-control-channel-based MAC protocol for cellular cognitive radio networks. IEEE Transactions on Vehicular Technology, 65, 5.

    Article  Google Scholar 

  19. Chai, B., Deng, R., Shi, Z., Cheng, P., & Chen, J. (2015). Energy-efficient power allocation in cognitive sensor networks: A coupled constraint game approach. Wireless Networks, 21, 5.

    Article  Google Scholar 

  20. Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2018). NS-2 based simulation framework for cognitive radio sensor networks. Wireless Networks, 24, 5.

    Article  Google Scholar 

  21. Hassa, F., Roy, A., & Saxena, N. (2016). Convergence of WSN and cognitive cellular network using maximum frequency reuse. IET Communications, 11, 5.

    Google Scholar 

  22. Chiti, F., Fantacci, R., & Tani, A. (2017). Performance evaluation of an adaptive channel allocation technique for cognitive wireless sensor networks. IEEE Transactions on Vehicular Technology, 66, 6.

    Article  Google Scholar 

  23. Zheng, M., Chen, L., Liang, W., Haibin, Y., & Jinsong, W. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications And Networking, 1, 1.

    Article  Google Scholar 

  24. Deng, R., Chen, J., Yuen, C., Cheng, P., & Sun, Y. (2012). Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Transactions on Vehicular Technology, 61, 2.

    Article  Google Scholar 

  25. Vujičić, B., Cackov, N., Vujičić, S. & Trajković, L. (2005). Modeling and characterization of traffic in public safety wireless networks. In Proceedings of SPECTS.

  26. Kim, H. & Shin, K.G. (2006). Adaptive MAC-layer sensing of spectrum availability in cognitive radio networks. Technical Report, CSE-TR-518-06, University of Michigan.

  27. Liang, Y.-C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7, 4.

    Article  Google Scholar 

  28. Do, T., & Mark, B. L. (2010). Joint spatial temporal spectrum sensing for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59, 7.

    Article  Google Scholar 

  29. Awin, F., Abdel-Raheem, E., & Ahmadi, M. (2017). Joint optimal transmission power and sensing time for energy efficient spectrum sensing in cognitive radio system. IEEE Sensors Journal, 17, 2.

    Article  Google Scholar 

  30. Wu, Y., & Tsang, D. H. K. (2011). Energy-efficient spectrum sensing and transmission for cognitive radio system. IEEE Communication Letters, 15, 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bala Vishnu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala Vishnu, J., Bhagyaveni, M.A. Energy Efficient Cognitive Radio Sensor Networks with Team-Based Hybrid Sensing. Wireless Pers Commun 111, 929–945 (2020). https://doi.org/10.1007/s11277-019-06893-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06893-y

Keywords

Navigation