Skip to main content

Advertisement

Log in

PHR Based Life Health Index Mobile Service Using Decision Support Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In modern society, interest in health is increasing and the development of medical devices and wireless communication enabled people to get healthcare services easily anytime and anywhere, i.e. ubiquitous healthcare. The development of IT convergence and network technology enabled users to obtain user-centered useful information easily through portable mobile devices as well as computers. Currently, healthcare related user-centered healthcare contents are being actively served and demand related to disease prevention or health promotion is steadily increasing. This paper proposes PHR-based life health index mobile services using a decision support model. A decision support model is developed by using health index related data of existing health weather index service and national health and nutrition survey provided by the Korea Meteorological Administration (KMA) and applications of the mobile environment are developed so that users can receive healthcare services easily anytime and anywhere. The developed mobile service application implemented its interface for the user’s convenient healthcare and was developed to enable interlocking with the user’s PHR information through web server. Unlike comprehensive and standardized index services of existing KMA health weather index and life health index service, the developed mobile service is serving the user’s health status in three stages of danger, alert, safety by using personalized PHR information. The development of the PHR-based life health index mobile service using the decision making model allowed users to check current health status index and obesity measurement, body mass index (BMI), abdominal obesity, potential obesity risk index etc. easily anytime and anywhere only with simple input in the interface of mobile application. Also, accurate and subdivided services can be offered to users and more personalized services enable users to use efficient healthcare service.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The R project, www.r-project.org.

  2. Korea Meteorological Administration, http://web.kma.go.kr/eng.

References

  1. Jung, E. Y., Kim, J. H., Chung, K. Y., & Park, D. K. (2013). Home health gateway based healthcare services through U-health platform. Wireless Personal Communications, 73(2), 207–218.

    Article  Google Scholar 

  2. Song, C. W., Lee, D., Chung, K. Y., Rim, K. W., & Lee, J. H. (2014). Interactive middleware architecture for lifelog based context awareness. Multimedia Tools and Applications, 71(2), 813–826.

    Article  Google Scholar 

  3. Yang, J. H., Kim, J. K., Kang, U. G., & Lee, Y.-H. (2013). Coronary heart disease optimization system on adaptive-network-based fuzzy inference system and linear discriminant analysis. Personal Ubiquitous Computing, 17(7), 1315–1572.

    Article  Google Scholar 

  4. Anooj, P. K. (2001). Clinical decision support system: Risk level prediction of heart disease using decision tree fuzzy rules. International Journal of Human Computer Interaction, 16(2), 97–166.

    Article  Google Scholar 

  5. Jung, H., & Chung, K. (2015). Sequential pattern profiling based bio-detection for smart health service. Cluster Computing, 18(1), 209–219.

    Article  Google Scholar 

  6. Jung, H., & Chung, K. (2015). Knowledge based dietary nutrition recommendation for obesity management. Information Technology and Management. doi:10.1007/s10799-015-0218-4.

    Google Scholar 

  7. Kim, S. H., & Chung, K. Y. (2013). Medical information service system based on human 3D anatomical model. Multimedia Tools and Applications. doi:10.1007/s11042-013-1584-8.

    Google Scholar 

  8. Kim, J. H., & Chung, K. Y. (2014). Ontology-based healthcare context information model to implement ubiquitous environment. Multimedia Tools and Applications, 71(2), 873–888.

    Article  Google Scholar 

  9. Zheng, J. W., Zhang, Z. B., Wu, T. H., & Zhang, Y. (2007). A wearable mobihealth care system supporting real-time diagnosis and alarm. Medical Biological Engineering Computing, 45(9), 877–885.

    Article  Google Scholar 

  10. Park, J. H., & Hwang, T. (2011). IT convergence healthcare technology. KICS Information and Communications Magazine, 28(5), 21–27.

    Google Scholar 

  11. Xiao, Y., Takahashi, D., Liu, J., Deng, H., & Zhang, J. (2011). Wireless telemedicine and m-health: Technologies, applications and research issues. International Journal of Sensor Networks, 10(4), 202–236.

    Article  Google Scholar 

  12. Oh, S. Y., Ghose, S., Chung, K., Han, J. S. (2014). Recent trends in convergence based smart healthcare service. International Journal of Technology and Health Care, 22(3), 303–307.

    Google Scholar 

  13. Oh, S. Y., Ghose, S., Jeong, Y. K., Ryu, J. K., Han, J. (2015). Convergence security systems. International Journal of Computer Virology and Hacking, 11(3), 119–121.

    Article  Google Scholar 

  14. Kim, J., Lee, J. (2015). Mobile, ubiquitous multimedia and digital convergence. Cluster Computing, 18(1), 243–245.

    Article  Google Scholar 

  15. Chung, K., Oh, S. Y. (2015). Improvement of speech signal extraction method using detection filter of energy spectrum entropy. Cluster Computing, 18(2), 629–635.

    Article  Google Scholar 

  16. Bodenheimer, T., Lorig, K., Holman, H., & Grumbach, K. (2002). Patient self-management of chronic disease in primary care. The Journal of the American Medical Association, 288(19), 2469–2475.

    Article  Google Scholar 

  17. Chung, K. Y. (2014). Recent trends on convergence and ubiquitous computing. Personal and Ubiquitous Computing, 18(6), 1291–1293.

    Article  Google Scholar 

  18. Chung, K., Boutaba, R., & Hariri, S. (2014). Recent trends in digital convergence information system. Wireless Personal Communications, 79(4), 2409–2413.

    Article  Google Scholar 

  19. Korea Meteorological Administration. http://web.kma.go.kr/.

  20. Kim, J. K., Lee, J. S., Park, D. K., Lim, Y. S., & Lee, Y. H. (2014). Adaptive mining prediction model for content recommendation to coronary heart disease patients. Cluster Computing, 17(3), 881–891.

    Article  Google Scholar 

  21. Park, D., Kim, J., Kim, J., Jung, E., & Lee, Y. (2011). U-health service model for managing health of chronic patients in multi-platform environment. The Journal of the Korea Contents Association, 11(8), 23–32.

    Article  Google Scholar 

  22. Kim, S. H., & Chung, K. (2015). Emergency situation monitoring service using context motion tracking of chronic disease patients. Cluster Computing, 18(2), 747–759.

    Article  Google Scholar 

  23. Kim, H., Jo, J., Choi, Y., Oh, J., Lee, J., & Yoon, K. (2010). Ubiquitous health care system for chronic disease management. Journal of Korea Information and Communications Magazine, 27(9), 3–8.

    Google Scholar 

  24. Korea Centers for Disease Control and Prevention. (2012). In 6th Korean national health and nutrition examinations survey (KNHANES V-1). Centers for Disease Control and Prevention.

  25. Kim, J. H., Lee, D., & Chung, K. Y. (2014). Item recommendation based on context-aware model for personalized U-healthcare service. Multimedia Tools and Applications, 71(2), 855–872.

    Article  MathSciNet  Google Scholar 

  26. Yen, Y. S., Chiang, W. C., Wang, H. Y., & Shiah, C. Y. (2011). WiMAX network for health care telemonitoring service. In Proceedings of the 2011 international conference on information science and applications (Vol. 1, pp. 1–7).

  27. Lee, M. S. (2010). Chronic diseases, depressive symptoms and the effects of social networks in Korean elderly population. Korean Association of Health and Medical Sociology, 27, 5–30.

    Google Scholar 

  28. Jung, H., & Chung, K. Y. (2014). Discovery of automotive design paradigm using relevance feedback. Personal and Ubiquitous Computing, 18(6), 1363–1372.

    Article  Google Scholar 

  29. Jung, H., Yoo, H., Lee, Y. H., & Chung, K. Y. (2015). Interactive pain nursing intervention system for smart health service. Multimedia Tools and Applications, 74(7), 2449–2466.

    Article  Google Scholar 

  30. Fleischer, R. (1999). Decision trees: Old and new results. Information and Computation, 152(1), 44–61.

    Article  MathSciNet  MATH  Google Scholar 

  31. Friedman, M., Noy, T. B., Blau, M., & Kandel, A. (1998). Certain computational aspects of fuzzy decision trees. Fuzzy Sets and Systems, 28(2), 163–170.

    Article  MathSciNet  MATH  Google Scholar 

  32. Yeon, J., Lee, D., Shim, J., & Lee, S.-G. (2011). Product review data and sentiment analytical processing modeling. Journal of Society for E-Business Studies, 16(4), 125–137.

    Article  Google Scholar 

  33. Chung, K. Y., Na, Y. J., & Lee, J. H. (2013). Interactive design recommendation using sensor based smart wear and weather WebBot. Wireless Personal Communications, 73(2), 243–256.

    Article  Google Scholar 

  34. Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In Proceedings of the international conference on very large databases (pp. 487–499).

  35. Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of ACM SIGMOD on management of data (pp. 207–216).

  36. Clifton, C., & Marks, D. (1996). Security and privacy implications of data mining. In Proceedings of international workshop on data mining and knowledge discovery, Montreal, Canada (pp. 15–19).

  37. Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. In Proceedings of international workshop on data mining and knowledge discovery (pp. 53–87).

  38. Saygin, Y., Verykios, V. S., & Elmagarmid, A. K. (2002). Privacy preserving association rule mining. In Proceedings of international workshop on research issues in data engineering: Engineering e-commerce/e-business systems (pp. 151–158).

  39. Jung, E. Y., Kim, J., Chung, K. Y., & Park, D. K. (2014). Mobile healthcare application with emr interoperability for diabetes patients. Cluster Computing, 17(3), 871–880.

    Article  Google Scholar 

  40. Jung, H., & Chung, K. Y. (2014). Mining based associative image filtering using harmonic mean. Cluster Computing, 17(3), 767–774.

    Article  Google Scholar 

  41. Chung, K. Y., & Lee, J. H. (2004). User preference mining through hybrid collaborative filtering and content-based filtering in recommendation system. IEICE Transaction on Information and Systems, 87(12), 2781–2790.

    MathSciNet  Google Scholar 

  42. Olson, D., & Courtney, J. (1992). Decision support models and expert system. Macmillan Publishing Company.

  43. Turban, E., Aronson, J., & Liang, T. P. (2005). Decision support systems and intelligent systems (7th ed.). Pearson Prentice Hall.

  44. Park, R. C., Jung, H., Chung, K., & Yoon, K. H. (2015). Picocell based telemedicine health service for human UX/UI. Multimedia Tools and Applications, 74(7), 2519–2534.

    Article  Google Scholar 

  45. Kim, J. H., Kim, J., Lee, D., & Chung, K. Y. (2014). Ontology driven interactive healthcare with wearable sensors. Multimedia Tools and Applications, 71(2), 827–841.

    Article  MathSciNet  Google Scholar 

  46. Chung, K., Kim, J. C., & Park, R. C. (2015). Knowledge based health service considering user convenience using hybrid Wi-Fi P2P. Information Technology and Management. doi:10.1007/s10799-015-0241-5.

    Google Scholar 

  47. Kim, S. H., & Chung, K. Y. (2014). 3D simulator for stability analysis of finite slope causing plane activity. Multimedia Tools and Applications, 68(2), 455–463.

    Article  Google Scholar 

  48. Kim, J. C., Jung, H., Kim, S. H., & Chung, K. (2015). Slope based intelligent 3D disaster simulation using physics engine. Wireless Personal Communications. doi:10.1007/s11277-015-2788-1.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Foundation for the Advancement of Science and Creativity (KOFAC), and funded by the Korean Government (MOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungyong Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H., Chung, K. PHR Based Life Health Index Mobile Service Using Decision Support Model. Wireless Pers Commun 86, 315–332 (2016). https://doi.org/10.1007/s11277-015-3069-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3069-8

Keywords

Navigation