Skip to main content
Log in

Efficient gene editing in the slow-growing, non-sporulating, melanized, endophytic fungus Berkleasmium sp. Dzf12 using a CRISPR/Cas9 system

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The endophytic fungus Berkleasmium sp. Dzf12 that was isolated from Dioscorea zingiberensis, is a proficient producer of palmarumycins, which are intriguing polyketides of the spirobisnaphthalene class. These compounds displayed a wide range of bioactivities, including antibacterial, antifungal, and cytotoxic activities. However, conventional genetic manipulation of Berkleasmium sp. Dzf12 is difficult and inefficient, partially due to the slow-growing, non-sporulating, and highly pigmented behavior of this fungus. Herein, we developed a CRISPR/Cas9 system suitable for gene editing in Berkleasmium sp. Dzf12. The protoplast preparation was optimized, and the expression of Cas9 in Berkleasmium sp. Dzf12 was validated. To assess the gene disruption efficiency, a putative 1, 3, 6, 8-tetrahydroxynaphthalene synthase encoding gene, bdpks, involved in 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis, was selected as the target for gene disruption. Various endogenous sgRNA promoters were tested, and different strategies to express sgRNA were compared, resulting in the construction of an optimal system using the U6 snRNA-1 promoter as the sgRNA promoter. Successful disruption of bdpks led to a complete abolishment of the production of spirobisnaphthalenes and melanin. This work establishes a useful gene targeting disruption system for exploration of gene functions in Berkleasmium sp. Dzf12, and also provides an example for developing an efficient CRISPR/Cas9 system to the fungi that are difficult to manipulate using conventional genetic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data is provided within the manuscript or supplementary information files.

References

  • Akamatsu HO, Chilvers MI, Stewart JE et al (2010) Identification and function of a polyketide synthase gene responsible for 1,8-dihydroxynaphthalene-melanin pigment biosynthesis in Ascochyta rabiei. Curr Genet 56:349–360

  • Arazoe T, Miyoshi K, Yamato T et al (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112:2543–2549

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Wegner B, Zeeck A (2000) Biosynthesis of cladospirone bisepoxide, a member of the spirobisnaphthalene family. J Antibiot 53:153–157

    Article  CAS  Google Scholar 

  • Cai X, Shan T, Li P et al (2009) Spirobisnaphthalenes from the endophytic fungus Dzf12 of Dioscorea zingiberensis and their antimicrobial activities. Nat Prod Commun 4:1469–1472

    CAS  PubMed  Google Scholar 

  • Cai Y-S, Guo Y-W, Krohn K (2010) Structure, bioactivities, biosynthetic relationships and chemical synthesis of the spirodioxynaphthalenes. Nat Prod Rep 27:1840–1870

    Article  CAS  PubMed  Google Scholar 

  • Chen GZ, Chu J (2019) Characterization of two polyketide synthases involved in sorbicillinoid biosynthesis by Acremonium chrysogenum using the CRISPR/Cas9 system. Appl Biochem Biotechnol 188:1134–1144

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  • Fujii I, Yasuoka Y, Tsai H-F et al (2004) Hydrolytic polyketide shortening by Ayg1p, a novel enzyme involved in fungal melanin biosynthesis. J Biol Chem 279:44613–44620

    Article  CAS  PubMed  Google Scholar 

  • Gakuubi MM, Ching KC, Munusamy M et al (2022) CRISPR/Cas9 RNP-assisted validation of palmarumycin biosynthetic gene cluster in Lophiotrema sp. F6932. Front Microbiol 13:1012115

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner DM, Kazan K (2018) Selection is required for efficient Cas9-mediated genome editing in Fusarium graminearum. Fungal Biol 122:131–137

  • Huang P-W, Yang Q, Zhu Y-L et al (2020) The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice. Fungal Genet Biol 136:103301

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama T, Tanaka Y, Okabe T et al (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38:637–642

  • Krohn K, Michel A, Floerke U et al (1994) Palmarumycins C1-C16 from Coniothyrium sp.: isolation, structure elucidation, and biological activity. Liebigs Ann Chem : 1099–1108

  • Li Y, Li P, Mou Y et al (2012) Enhancement of diepoxin ζ production in liquid culture of endophytic fungus Berkleasmium sp. Dzf12 by polysaccharides from its host plant Dioscorea zingiberensis. World J Microbiol Biotechnol 28:1407–1413

  • Liang Y, Han Y, Wang C et al (2018) Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system. Front Plant Sci 9:699

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu R, Chen L, Jiang YP et al (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhao Y, Wang W et al (2017) Recent progress of natural product spirobisnaphthalenes. Chin J Org Chem 37:2883–2894

    Article  CAS  Google Scholar 

  • Luo N, Li ZY, Ling J et al (2023) Establishment of a CRISPR/Cas9-mediated efficient knockout system of Trichoderma hamatum T21 and pigment synthesis PKS gene knockout. J Fungi 9:595

  • Matsu-Ura T, Baek M, Kwon J et al (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Mou Y, Meng J, Fu X et al (2013) Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12 Molecules 18:15587–15599

  • Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Schweizer G, Reissmann S et al (2016) Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 89:3–9

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shan T, Tian J, Wang X et al (2014) Bioactive spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. J Nat Prod 77:2151–2160

  • Shi TQ, Gao J, Wang WJ et al (2019) CRISPR/Cas9-based genome editing in the filamentous fungus Fusarium fujikuroi and its application in strain engineering for gibberellic acid production. ACS Synth Biol 8:445–454

  • Song L, Ouedraogo JP, Kolbusz M et al (2018) Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PLoS ONE 13:e0202868

  • Thompson JE, Fahnestock S, Farrall L et al (2000) The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. J Biol Chem 275:34867–34872

  • Tian J, Liu XC, Liu ZL et al (2016) Larvicidal spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. against Aedes albopictus. Pest Manage Sci 72:961–965

    Article  CAS  Google Scholar 

  • Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36:1262–1280

    Article  CAS  PubMed  Google Scholar 

  • Vagstad Anna L, Hill Eric A, Labonte Jason W et al (2012) Characterization of a fungal thioesterase having claisen cyclase and deacetylase activities in melanin biosynthesis. Chem Biol 19:1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Cobine PA, Coleman JJ (2018) Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet Biol 117:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber J, Valiante V, Nodvig CS et al (2017) Functional reconstitution of a fungal natural product gene cluster by advanced genome editing. ACS Synth Biol 6:62–68

    Article  CAS  PubMed  Google Scholar 

  • Weyda I, Yang L, Vang J et al (2017) A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods 135:26–34

  • Wheeler MH, Abramczyk D, Puckhaber LS et al (2008) New biosynthetic step in the melanin pathway of Wangiella (Exophiala) dermatitidis: evidence for 2-acetyl-1,3,6,8-tetrahydroxynaphthalene as a novel precursor. Eukaryot Cell 7:1699–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie SS, Shen B, Zhang CB et al (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE 9:e100448

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhou L, Zhao J et al (2008) Fungal endophytes from Dioscorea zingiberensis rhizomes and their antibacterial activity. Lett Appl Microbiol 46:68–72

    Article  CAS  PubMed  Google Scholar 

  • Xu XR, Huang RY, Yin WB (2021) An optimized and efficient CRISPR/Cas9 system for the endophytic fungus Pestalotiopsis fici. J Fungi 7:809

  • Yang J, Zhao X, Sun J et al (2010) A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol Plant-Microbe Interact 23:112–123

    Article  CAS  PubMed  Google Scholar 

  • Yu JH, Hamari Z, Han KH et al (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Meng X, Wei X et al (2016) Highly efficient CRISPR mutagenesis by microhomology-mediated end joining in Aspergillus fumigatus. Fungal Genet Biol 86:47–57

  • Zhao J, Li Y, Shan T et al (2011) Enhancement of diepoxin ζ production with in situ resin adsorption in mycelial liquid culture of the endophytic fungus Berkleasmium sp. Dzf12 from Dioscorea zingiberensis. World J Microbiol Biotechnol 27:2753–2758

  • Zheng YM, Lin FL, Gao H et al (2017) Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Sci Rep 7

  • Zheng X, Zheng P, Zhang K et al (2019) 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synth Biol 8:1568–1574

  • Zhong L, Zhou Y, Gao S et al (2011) Endophytic fungi from the hybrid ‘Neva’ of Populus deltoides Marsh × Populus nigra L. and their antimicrobial activity. Afr J Microbiol Res 5:3924–3929

    Article  CAS  Google Scholar 

  • Zhou L, Zhao J, Shan T et al (2010) Spirobisnaphthalenes from fungi and their biological activities. Mini-Rev Med Chem 10:977–989

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 31872623, 31071710), and National Key Research and Development Program of China (2023YFD1401400).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, L.Z. and D.L.; methodology, S.Z., D.X., D.L.; software, S.Z., D.X.; formal analysis, S.Z., Z.S., D.L.; investigation, S.Z., R.Y., M.Z., Z.Z., Z.S and Y.M.; data curation, S.Z.; writing, S.Z., D.L.; supervision, L.Z. and D.L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Daowan Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Yin, R., Zhang, M. et al. Efficient gene editing in the slow-growing, non-sporulating, melanized, endophytic fungus Berkleasmium sp. Dzf12 using a CRISPR/Cas9 system. World J Microbiol Biotechnol 40, 176 (2024). https://doi.org/10.1007/s11274-024-03988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-024-03988-y

Keywords

Navigation