Skip to main content
Log in

Assessing the bioremediation potential of indigenously isolated Klebsiella sp. WAH1 for diclofenac sodium: optimization, toxicity and metabolic pathway studies

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Among the various pharmaceutical pollutants, diclofenac sodium (DFS), a widely prescribed non-steroid anti-inflammatory drug is detected in the aquatic environment at concentrations which can be harmful to living organisms. Present study illustrates the isolation and characterization of strain Klebsiella pneumoniae WAH1 from activated sludge and its ability to degrade DFS as sole source of carbon and energy. The growth and degradation capacity of K. pneumoniae WAH1 under different conditions of pH, temperature, rotation speed, and inoculum age were evaluated using optical density and liquid chromatography-mass spectroscopy (LCMS). The results show that K. pneumoniae WAH1 can grow well with DFS as its sole source of carbon and degrade 79.14% of DFS (10 mg L−1) within 72 h. Based on chemical structure of intermediates detected through LCMS, it is inferred that degradation pathway advanced by hydroxylation, decarboxylation, and dechlorination reactions. Toxicity studies revealed the non-toxic nature of the end-products of DFS degradation after 72 h. The findings suggest that K. pneumoniae WAH1 has an excellent potential for bioremediation of DFS in industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

Ms. Saloni Sharma deeply acknowledgs the fellowship received from the University Grants Commission, New Delhi, India.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Setia.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Setia, H. & Toor, A.P. Assessing the bioremediation potential of indigenously isolated Klebsiella sp. WAH1 for diclofenac sodium: optimization, toxicity and metabolic pathway studies. World J Microbiol Biotechnol 37, 33 (2021). https://doi.org/10.1007/s11274-021-02998-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-02998-4

Keywords

Navigation