Skip to main content
Log in

Salmonella Typhimurium peptidyl-prolyl cis–trans isomerase C (PPIase C) plays a substantial role in protein folding to maintain the protein structure

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Salmonella is a well-known food-borne pathogen causing disease in humans and animals worldwide. Peptidyl-prolyl isomerases (PPIases) catalyse the cis–trans isomerisation of prolyl bound, which is a slow and rate-limiting step of protein folding. Here, we present the biochemical and molecular characterisation of a novel multi-domain parvulin-type, PPIases-C from the pathogenic bacteria Salmonella Typhimurium, annotated as rPpiC. The recombinant plasmid PpiC_pET28c was used for protein induction using 1.5 mM concentration of isopropyl-β-D-thiogalactopyranoside at 30 °C. Subsequently, the protein was identified by using the LC–MS technique showing high match score and sequence coverage with available PPIases-C proteins database. Using the succinyl-ala-phe-pro-phe-p nitroanilide as a substrate, Vmax of the enzyme was found to be 0.8187 ± 0.1352 µmoles/min and Km = 1.6014 ± 0.8449 µM, respectively. With this, we conclude that rPpiC protein is an active form of protein from Salmonella Typhimurium and plays an important role in protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida FA, Pimentel-Filho NJ, Pinto UM, Mantovani HC, Oliveira LL, Vanetti MC (2017) Acyl homoserine lactone-based quorum sensing stimulates biofilm formation by Salmonella Enteritidis in anaerobic conditions. Arch Microbiol 199:475–486

    Google Scholar 

  • Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (2000) Salmonella nomenclature. J Clin Microbiol 38:2465–2467

    CAS  Google Scholar 

  • Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159

    CAS  Google Scholar 

  • Chen J, Liefke R, Jiang L, Wang J, Huang C, Gong Z et al (2016) Biochemical features of recombinant human cyclophilin. J Anticancer Res 36:1175–1180

    CAS  Google Scholar 

  • Chevet E, Cameron PH, Pelletier MF, Thomas DY, Bergeron JJ (2001) The endoplasmic reticulum: integration of protein folding, quality control, signaling and degradation. Curr Opin Struct Biol 11:120–124

    CAS  Google Scholar 

  • Cimmino A, Capasso R, Muller F, Sambri I, Masella L, Raimo M et al (2008) Protein isoaspartate methyltransferase prevents apoptosis induced by oxidative stress in endothelial cells: role of Bcl-Xl deamidation and methylation. PLoS ONE 3:e3258

    Google Scholar 

  • Couturier J, Przybyla-Toscano J, Roret T, Didierjean C, Rouhier N (2015) The roles of glutaredoxins ligating Fe-S clusters: sensing, transfer or repair functions? Biochim Biophys Acta 1853:1513–1527

    CAS  Google Scholar 

  • Day AM, Brown JD, Taylor SR, Rand JD, Morgan BA, Veal EA (2012) Inactivation of a peroxiredoxin by hydrogen peroxide is critical for thioredoxin-mediated repair of oxidized proteins and cell survival. Mol Cell 45:398–408

    CAS  Google Scholar 

  • de Jong HK, Parry CM, van der Poll T, Wiersinga WJ (2012) Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog 8:e1002933

    Google Scholar 

  • Fischer G, Aumuller T (2003) Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev Physiol Biochem Pharmacol 148:105–150

    CAS  Google Scholar 

  • Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337:476

    CAS  Google Scholar 

  • Goricar K, Kovac V, Jazbec J, Zakotnik B, Lamovec J, Dolzan V (2015) Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol 39:182–188

    Google Scholar 

  • Gothel SF, Marahiel MA (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436

    CAS  Google Scholar 

  • Haokip N, Naorem A (2017) Functional characterisation of parvulin-type peptidyl prolyl cis-trans isomerase, PinA in Dictyostelium discoideum. Biochem Biophys Res Commun 482:208–214

    CAS  Google Scholar 

  • He Z, Li L, Luan S (2004) Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol 134:1248–1267

    CAS  Google Scholar 

  • Henderson B, Allan E, Coates AR (2006) Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immunity 74:3693–3706

    CAS  Google Scholar 

  • Hirosawa M, Hoshida M, Ishikawa M, Toya T (1993) MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci 9:161–167

    CAS  Google Scholar 

  • Horne SM, Kottom TJ, Nolan LK, Young KD (1997) Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen. Infect Immun 65:806–810

    CAS  Google Scholar 

  • Jonsson TJ, Johnson LC, Lowther WT (2008) Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451:98–101

    Google Scholar 

  • Jonsson TJ, Lowther WT (2007) The peroxiredoxin repair proteins. Subcell Biochem 44:115–141

    Google Scholar 

  • Kromina K, Ignatov A, Abdeeva I (2008) Role of peptidyl-prolyl-cis/trans-isomerases in pathologic processes. Biochemistry (Moscow) 2:195–202

    Google Scholar 

  • Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15

    CAS  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Google Scholar 

  • Kumawat M, Ahlawat S, Ahlawat N, Pesingi PK, Karuna I, Mishra PK et al (2016a) The cloning and sequencing analasis of Peptidylprolylcis transisomerases C (ppiC) gene of Salmonella Typhimurium. J Pure Appl Microbiol 10:463–469

    CAS  Google Scholar 

  • Kumawat M, Karuna I, Ahlawat N, Ahlawat S (2020) Identification of Salmonella Typhimurium Peptidyl-prolyl cis-trans isomerase B (PPIase B) and assessment of their role in the protein folding. Protein Pept Lett 27:744

    CAS  Google Scholar 

  • Kumawat M, Pesingi PK, Agarwal RK, Goswami TK, Mahawar M (2016b) Contribution of protein isoaspartate methyl transferase (PIMT) in the survival of Salmonella Typhimurium under oxidative stress and virulence. Int J Med Microbiol 306:222–230

    CAS  Google Scholar 

  • Kumawat M, Singh PK, Rananaware SR, Ahlawat S (2019) Comparative evaluation of structure and characteristic of peptidyl-prolyl cis-trans isomerase proteins and their function in Salmonella Typhimurium stress responses and virulence. Folia Microbiol 65:1–11

    Google Scholar 

  • Landino LM, Iwig JS, Kennett KL, Moynihan KL (2004a) Repair of peroxynitrite damage to tubulin by the thioredoxin reductase system. Free Radic Biol Med 36:497–506

    CAS  Google Scholar 

  • Landino LM, Moynihan KL, Todd JV, Kennett KL (2004b) Modulation of the redox state of tubulin by the glutathione/glutaredoxin reductase system. Biochem Biophys Res Commun 314:555–560

    CAS  Google Scholar 

  • Lu KP, Finn G, Lee TH, Nicholson LK (2007) Prolyl cis-trans isomerization as a molecular timer. Nat Chem Biol 3:619

    CAS  Google Scholar 

  • Lu KP, Liou Y-C, Zhou XZ (2002) Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 12:164–172

    CAS  Google Scholar 

  • Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ et al (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    Google Scholar 

  • Matern Y, Barion B, Behrens-Kneip S (2010) PpiD is a player in the network of periplasmic chaperones in Escherichia coli. BMC Microbiol 10:251

    Google Scholar 

  • Nakatsu Y, Matsunaga Y, Yamamotoya T, Ueda K, Inoue Y, Mori K et al (2016) Physiological and pathogenic roles of prolyl isomerase Pin1 in metabolic regulations via multiple signal transduction pathway modulations. Int J Mol Sci 17:1495

    Google Scholar 

  • Ogawa F, Sander CS, Hansel A, Oehrl W, Kasperczyk H, Elsner P et al (2006) The repair enzyme peptide methionine-S-sulfoxide reductase is expressed in human epidermis and upregulated by UVA radiation. J Invest Dermatol 126:1128–1134

    CAS  Google Scholar 

  • Rudrabhatla P, Zheng YL, Amin ND, Kesavapany S, Albers W, Pant HC (2008) Pin1-dependent prolyl isomerization modulates the stress-induced phosphorylation of high molecular weight neurofilament protein. J Biol Chem 283:26737–26747

    CAS  Google Scholar 

  • Scholz C, Rahfeld J, Fischer G, Schmid FX (1997) Catalysis of protein folding by parvulin. J Mol Biol 273:752–762

    CAS  Google Scholar 

  • Sever NK, Akan M (2019) Molecular analysis of virulence genes of Salmonella Infantis isolated from chickens and turkeys. Microb Pathog 126:199–204

    Google Scholar 

  • Shi Y (2009) Serine/threonine phosphatases: mechanism through structure. Cell 139:468–484

    CAS  Google Scholar 

  • Southern SJ, Scott AE, Jenner DC, Ireland PM, Norville IH, Sarkar-Tyson M (2016) Survival protein A is essential for virulence in Yersinia pestis. Microb Pathog 92:50–53

    CAS  Google Scholar 

  • Stepkowski SM (2000) Molecular targets for existing and novel immunosuppressive drugs. Expert Rev Mol Med 2:1–23

    CAS  Google Scholar 

  • Stewart GR, Young DB (2004) Heat-shock proteins and the host-pathogen interaction during bacterial infection. Curr Opin Immunol 16:506–510

    CAS  Google Scholar 

  • Unal CM, Steinert M (2014) Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 78:544–571

    Google Scholar 

  • Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S et al (2004) Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N-and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem 279:19302–19314

    CAS  Google Scholar 

  • Wang P, Zhang H, Liu Y, Lv R, Liu X, Song X et al (2020) SoxS is a positive regulator of key pathogenesis genes and promotes intracellular replication and virulence of Salmonella Typhimurium. Microb Pathog 139:103925

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the SHUATS for providing the necessary funds and facilities for the current study.

Funding

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Contributions

MK, IK and SA designed the experiments and carried out the experimental work. All authors were involved in scientific discussion and analysis of the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Manoj Kumawat or Sushma Ahlawat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumawat, M., Singh, R., Karuna, I. et al. Salmonella Typhimurium peptidyl-prolyl cis–trans isomerase C (PPIase C) plays a substantial role in protein folding to maintain the protein structure. World J Microbiol Biotechnol 36, 168 (2020). https://doi.org/10.1007/s11274-020-02943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02943-x

Keywords

Navigation