Skip to main content

Advertisement

Log in

The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Candida spp. are opportunistic fungi that can cause severe infections especially in immunocompromised patients. Candidiasis is currently the most frequent fungal disease affecting humans globally. This rise is attributed to the vast increase in resistance to antifungal agents. In recent years, the epidemiological and clinical relevance of fungal infections caused by Candida species have attracted a lot of interest with increasing reports of intrinsic and acquired resistance among Candida species. Thus, the formulation of novel, and efficient therapy for Candida infection persists as a critical challenge in modern medicine. The use of nanoparticle as a potential biomaterial to achieve this feat has gained global attention. Nanoparticles have shown promising antifungal activity, and thus, could be seen as the next generation antifungal agents. This review concisely discussed Candida infection with emphasis on anti-candida resistance mechanisms and the use of nanoparticles as potential therapeutic agents against Candida species. Moreover, the mechanisms of activity of nanoparticles against Candida species, recent findings on the anti-candida potentials of nanoparticles and future perspectives are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abo-Shama UH, El-Gendy H, Mousa WS, Hamouda RA, Yousuf WE, Hetta HF, Abdeen EE (2020) Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect Drug Resist 13:351–362

    CAS  Google Scholar 

  • Ahmed Q, Gupta N, Kumar Nimesh S (2017) Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif Cells Nanomed Biotechnol 45(6):1192–1200

    CAS  Google Scholar 

  • Akpan A, Morgan R (2002) Oral candidiasis. Postgrad Med J 78:455–459

    CAS  Google Scholar 

  • Alhussaini MS, El-Tahtawi NF (2013) Evaluation and molecular characterization of Candida species in urine samples from renal patients. J Pure Appl Microbiol 7(1):65–77

    CAS  Google Scholar 

  • Ali EM, Abdallah BM (2020) Effective inhibition of Candididiasis using an eco-friendly leaf extract of Calotropis-gigantean-mediated silver nanoparticles. Nanomaterials 10:422

    CAS  Google Scholar 

  • Antinori S, Milazzo L, Sollima S, Galli M, Corbellino M (2017) Candidemia and invasive candidiasis in adults: a narrative review. Eur J Int Med 37:e18–e19

    Google Scholar 

  • Arendrup MC, Patterson TF (2017) Multidrug-resistant Candida: epidemiology, molecular mechanisms and treatment. J Infect Dis 216(3):S445–S451

    CAS  Google Scholar 

  • Arya G, Kumari RM, Pundir R, Chatterjee S, Gupta N, Kumar A, Chandra R, Nimeshi S (2019) Versatile biomedical potential of biosynthesized silver nanoparticles from Acacia nilotica bark. J Appl Biomed 17(2):115–124

    Google Scholar 

  • Ashrafi M, Bayat M, Mortazavi P, Hashemi SJ, Meimandipour A (2020) Antimicrobial effect of chitosan-silver-copper nanocomposite on Candida albicans. J Nanostruct Chem 10:87–95

    CAS  Google Scholar 

  • Baghayeri M, Mahdavi B, Hosseinpor-Mohsen AZ, Farhadi S (2018) Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl Organomet Chem 32(2):e4057

    Google Scholar 

  • Barchiesi F, Orsetti E, Osimani P, Catassi C, Santelli F, Manso E (2016) Factors related to outcome of bloodstream infections due to Candida Parapsilosis complex. BMC Infect Dis 16:387

    Google Scholar 

  • Bongomin F, Gago S, Oladele RO, Denning DW (2017) Global and multi-national prevalence of fungal diseases-estimate precision. J Fungi 3:57

    Google Scholar 

  • Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med. https://doi.org/10.1126/scitranslmed.3004404

    Article  Google Scholar 

  • Campion EW, Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. New Eng J Med 373:1445–1456

    Google Scholar 

  • Carbone C, Fuochi V, Zielinska A, Musumeci T, Souto EB, Bonaccorso A, Pugalia C, Petronio GP, Furneri PM (2020) Dual-drugs delivery in solid nanoparticles for the treatment of Candida albicans mycosis. Colloids Surf B 186:110705

    CAS  Google Scholar 

  • Casalinuovo IA, Di FP, Garaci E (2004) Fluconazole resistance in Candida albicans: a review of mechanisms. Eur Rev Med Pharmacol Sci 8:69–77

    CAS  Google Scholar 

  • Cheong Y-K, Arce MP, Benito A, Chen D, Crisotomo NL, Kerai LV, Rodriguez G, Valverde JL, Vadalia M, Cerpa-Naranjo A, Ren G (2020) Synergistic antifungal study of PEGylated Graphene oxides and copper nanoparticles against Candida albicans. Nanomaterials 10:819

    CAS  Google Scholar 

  • Chowdhary A, Anil Kumar V, Sharma C, Prakash A, Agarwal K, Babu R, Dinesh KR, Karim S, Singh SK, Hagen F, Meis JF (2014) Multidrug-resistant endemic clonal strain of Candida auris in India. Eur J Clin Microbiol Infect Dis 33:919–926

    CAS  Google Scholar 

  • Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R (2018) Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cell Nanomed Biotechnol 2018:1210–1220

    Google Scholar 

  • Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A (2018) Epidemiological, clinical characterisitcs, resistance, and treatment of infections by Candida auris. J Intensive Care 6:69

    Google Scholar 

  • Cortegiani A, Misseri G, Chowdhary A (2019) What’s new on emerging resistant Candida species. Intensive Care Med 45(4):512–515

    Google Scholar 

  • Costa-de-Oliveira S, Rodrigues AG (2020) Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad-host-antifungal. Microorganisms 8(2):154

    CAS  Google Scholar 

  • de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de SousaCartagenes MdoS, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, Monteiro CdeA (2018) Candida infections and therapeutic strategies: mechanisms of actions for traditional and alternative agents. Front Microbiol 9:1351

    Google Scholar 

  • Deorukhkar SC, Saini S, Mathew S (2014) Non-albicans Candida infection: an emerging threat. Interdiscip Perspect Infect Dis 615958:7

    Google Scholar 

  • Domingues Bianchin M, Borowicz SM, da Rosa Monte Machado G, Pippi B, Stanisçuaski Guterres S, Raffin Pohlmann A et al (2019) Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids Surf B 175:523–529

    CAS  Google Scholar 

  • Edis Z, Bloukh SH, Ibrahim MR, Sara HA (2020) ‘’Smart’’ antimicrobial nanocomplexes with potential to disease surgical site infections (SSI). Pharmaceutics 12:361

    Google Scholar 

  • Ekpo IA, Kechia FA, Iwewe YS, Ngueguim AD, Nangwat C, Dzoyem JP (2017) Species distribution and antifungal susceptibility profile of Candida spp. isolated from urine of hospitalized patients in Dschang district hospital Cameroon. Int J Biol Chem Sci 11(3):1212–1221

    CAS  Google Scholar 

  • Essien ER, Atasie VN, Okeafor AO, Nwude DO (2020) Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (crantz) leaf extract. Int Nano Lett 10:43–48

    CAS  Google Scholar 

  • Fernandes Costa A, Evangelista Araujo D, Santos Cabral M, Teles Brito I, de Menezes B, Leite L, Pereira M et al (2019) Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol 57:52–62

    Google Scholar 

  • Folorunso A, Akintelu S, Oyebamiji AK, Ajaji S, Abiola B, Abdusalam I, Morakinyo A (2019) Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J Nanostruc Chem 9:111–117

    CAS  Google Scholar 

  • Forche A, Cromie G, Gerstein AC, Solis NV, Pisithkul T, Srifa W, Jeffery E, Abbey D, Filler SG, Dudley AM, Berman J (2018) Rapid phenotypic and genotypic diversification after exposure to the oral host niche in Candida albicans. Genetics 209(3):725–741

    CAS  Google Scholar 

  • Furneri PM, Petronio GP, Fuochi V, Cupri S, Pignatello R (2017) Nanosized devises as antibiotics and antifungals delivery: past, news, and outlook, nanostructures for drug delivery. Elsevier 2017:697–748

    Google Scholar 

  • Ghaddar N, Anastasiadis E, Halimeh R, Ghaddar A, Dhar R, Alfouzan W, Yusef H, El Chaar M (2020) Prevalence and antifungal susceptibility of Candida albicans causing vaginal discharge among pregnant women in Lebanon. BMC infect Dis 20:32

    CAS  Google Scholar 

  • Golipour F, Habibipour R, Moradihaghgou L (2019) Investigating effects of superparamagnetic iron oxide nanoparticles on Candida albicans biofilm formation. Med Lab J 13(6):44–50

    Google Scholar 

  • Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20:5–10

    Google Scholar 

  • Gupta M, Vyas SP (2012) Development, characterization and in vivo assessment of effective lipidic nanoparticles for dermal delivery of fluconazole against cutaneous candidiasis. Chem Physics Lip 165(4):454–461

    CAS  Google Scholar 

  • Gurav VL, Samant RA, Manjaer SB, Patil UK, Solkar SR, Moghe SS (2020) Biosynthesis of calcium oxide nanoparticles using Ocimum sanctum (Tulsi) leaf extracts and screening its antimicrobial activity. Asian J Nanosci Mater 3:115–120

    CAS  Google Scholar 

  • Gutiérrez JA, Caballero S, Díaz LA, Guerrero MA, Ruiz J, Ortiz CC (2018) High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater Sci Eng 4(2):647–653

    Google Scholar 

  • Halbandge SD, Jadhav AK, Jangid PM, Shelar AV, Patil RH, Karuppayil SM (2019) Molecular targets of biofabricated silver nanoparticles in Candida albicans. J Antibiot. https://doi.org/10.1038/s41429-019-0185-9

    Article  Google Scholar 

  • Hamid S, Zainab S, Faryal R, Ali N, Sharafat I (2018) Inhibition of secreted aspartyl proteinase activity in biofilms of Candida species by mycogenic silver nanoparticles. Artif Cells Nanomed Biotechnol 46(3):551–557

    CAS  Google Scholar 

  • Hassaneen AM, Ghonaim RA, Hassanin HM, Salama NA, Elgohary T (2014) Different aspects of candiduria as an important nosocomial infection. Med J Cairo University 82(1):199–204

    Google Scholar 

  • Helmy A, El-shazly M, Seleem A, Abdelmohsen U, Salem MA, Samir A, Rabeh M, Elshamy A, Singab ANB (2020) The synergistic effect of biosynthesized silver nanoparticles from a combined extract of parsley, corn silk and gum Arabic: in vivo antioxidant, anti-inflammatory and antimicrobial activities. Mater Res Exp 7:025002

    CAS  Google Scholar 

  • Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG (2012) Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. Febs J 279:1327–1338

    CAS  Google Scholar 

  • Ijaz F, Shahid S, Khan SA, Ahmad W, Zaman S (2017) Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: antimicrobial antioxidant and photocatalytic dye degradation activities. Trop J Pharm Res 16(4):743–753

    CAS  Google Scholar 

  • Jalal M, Ansari MA (2018) Anticandidal activity of bioinspired ZnoNps: effect on growth, cell morphology and key virulence attributes of Candida species. Artif Cells Nanomed Biotechnol 46(1):912–925

    CAS  Google Scholar 

  • Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Raees K (2018) Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials (Basel) 8(8):586

    Google Scholar 

  • Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatrondi A, Siddiqui MI (2019) Anticandidal activity of biosynthesized silver nanoparticles:effect on growth, cell morphology, key virulence attributes of Candida species. Inter J Nanomed 14:4667–4679

    CAS  Google Scholar 

  • Jansook P, Pichayakorn W, Ritthidej GC (2018) Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm 44:1693–1700

    CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    CAS  Google Scholar 

  • Jiang C, Dong D, Yu B, Cai G, Wang X, Ji Y, Peng Y (2013) Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. J Antimicrob Chemother 68:778–785

    CAS  Google Scholar 

  • John MS, Nagith JA, Ramasamy KP, Mancini A, Giuli G, Natalello A, Ballarini P, Miceli C, Pucciarelli S (2020) Synthesis of bioactive silver nanoparticles by a Pseudomonas strain associated with the Antarctic psychrophilic protozoan Euplotes focardii. Marine Drugs 18:38

    CAS  Google Scholar 

  • Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorganic Med Chem 20:5678–5698

    CAS  Google Scholar 

  • Kauffman CA, Fisher JF, Sobel JD, Newman CA (2011) Candida urinary tract infections-diagnosis. Clin Infect Dis 52(6):S542

    Google Scholar 

  • Kedziora A, Speruda M, Kezyzewska E, Rybka J, Lukowiak A, Bugla-Pl-ploskoriska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19(2):444

    Google Scholar 

  • Kelidari HR, Moazeni M, Babaei R, Saeedi M, Akbari J, Parkoohi PI et al (2017) Improved yeast delivery of fluconazole with a nanostructured lipid carrier system. Biomed Pharmacother 89:83–88

    CAS  Google Scholar 

  • Khatoon N, Sharma Y, Sardar M, Manzoor N (2019) Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles. J Mycol Med 29(3):201–209

    CAS  Google Scholar 

  • Kim M, Jee SC, Shinde SK, Mistry BM, Saratale RG, Saratale GD, Ghodake GS, Kim DY, Sung JS, Kadam AA (2019) Green synthesis of anisotropic peptone-silver nanoparticles and its potential application as antibacterial agents. Polymers 11:271

    CAS  Google Scholar 

  • Kirchner FR, Littringer K, Altmeiers S, Tran VDT, Schonherr F, Lemberg C, Pagni M, Sanglard D, Joller N, LeibundGut-Landmann S (2019) Persistence of Candida albicans in the oral mucosa induces a curbed inflammatory host response that is independent of immunosuppression. Front Immunol 10:330

    CAS  Google Scholar 

  • Kischkel B, Castilho PF, de Oliveira KMP, de Bruschi ML, Svidzinski TIE et al (2020a) Silver nanoparticles stabilized with propolis shows reduced toxicity and potential activity against fungal infections. Future Microbiol 15:521–539

    CAS  Google Scholar 

  • Kischkel B, Rossi SA, Santos Junior SR, Nosanchuk JD, Travassos LR, Taborda CP (2020b) Therapies and vaccines based on nanoparticles for the treatment of systemic fungal infections. Frontiers Cell Infect Microbiol 10:463

    Google Scholar 

  • Kmeid J, Jabbour J-F, Kanj SS (2019) Epidemiology and burden of invasive fungal infections in the countries of the Arab league. J Infect Public Health. https://doi.org/10.1016/j.jiph.2019.05.007

    Article  Google Scholar 

  • Kraneveld EA, Buija MJ, Bonder MV, Keijser BJF, Crielaard W, Zaura E (2012) The relation between oral Candida load and bacterial microbiome profiles in Dutch older adults. PLoS ONE 7(8):e42770

    CAS  Google Scholar 

  • Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M (2012) Antibacterial activity of MgO nanoparticles based on lipid peroxidation of oxygen vacancy. J Nanoparticle Res 14:1063

    Google Scholar 

  • Lamoth F, Lockhart SR, Berkow E, Calandra T (2018) Changes in the epidemiological landscape of invasive candidiasis. J antimicrob chemother 73:i4–i13

    CAS  Google Scholar 

  • Landage KS, Arabade GK, Khanna P, Bhongale CT (2020) Biological approach to synthesize TiO2 nanoparticles using Staphylococcus aureus for antibacterial and antibiofilm applications. J Microbiol Exp 8(1):36–43

    Google Scholar 

  • Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobitechnol 13:91

    Google Scholar 

  • Latha R, Poongothai GK, Annie RS, Karitha K, Hemalatha G, Nirmala J, Sethumadharan K (2014) Phenotypic characterization and antifungal susceptibility pattern to fluconazole in Candida species isolated from vulvovaginal candidiasis in a tertiary care hospital. J Clin Diagnos Res 8(5):1–4

    Google Scholar 

  • Lee NY, Ko W-C, Hsueh P-R (2019) Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol 10:1153

    CAS  Google Scholar 

  • Li S, Zhu T, Huang J, Guo Q, Chen G, Lai Y (2017) Durable antibacterial and UV-protective Ag/TiO(2)@ fabrics for sustainable biomedical application. Int J Nanomedicine 12:2593–2606

    CAS  Google Scholar 

  • Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, Colombo AL, Calvo B, Cuomo CA, Desjardins CA, Berkow EL, Castanheira M, Magobo RE, Jabeen K, Asghar RJ, Meis JF, Jackson B, Chiller T, Litvintseva AP (2017) Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole genome sequencing and epidemiological analyses. Clin Infect Dis 64:134–140

    CAS  Google Scholar 

  • Lone SA, Ahmad A (2019) Candida auris-the growing menace to global health. Mycoses 62:8

    Google Scholar 

  • Lotfali E, Shadverdi AR, Mohammadi R, Noorbakhsh F, Ghajari A, Ansari S, Rezaie S (2017) In vitro activity of two nanoparticles on clinical isolates of Candida parapsilossis, showing resistance against antifungal agents in children. Arch Clin Infect Dis 12(4):e13853

    Google Scholar 

  • Ludwig DB, de Camargo LEA, Khalil NM, Auler ME, Mainardes RM (2018) Antifungal activity of chitosan-coated poly (lactic-co-glycolic) acid nanoparticles containing Amphotericin B. Mycopathologia 183:659–668

    CAS  Google Scholar 

  • Magil SS, O’Leavy E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, Wilson LE, Kainer MA, Lynfield R, Greissman S, Ray SM, Beldars Z (2018) Changes in prevalence of health care-associated infections in US. Hospitals N Engl J Med 379:1732–1744

    Google Scholar 

  • Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, Mc Allister-Hollod L, Nadle J, Ray SM, Fridkin SK (2014) Emerging infections and antimicrobial-use prevalence survey team multistate point-prevalence survey of health care-associated infections. New Eng J Med 370(13):1198–1208

    CAS  Google Scholar 

  • Manikandan C, Amsath A, Prabakaran P (2013) Random amplified polymorphic DNA-PCR analysis on bacterial strains from children diarrhea. Int J Curr Microbiol Appl Sci 2(5):306–314

    Google Scholar 

  • Mayer FL, Wilson D, Humbe B (2013) Candida albicans pathogenicity mechanism. J Virulence 4:119–128

    Google Scholar 

  • Mba IE, Nweze EI (2020) Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 39(10):1797–1819

    Google Scholar 

  • Miri A, Khatami M, Ebrahimy O, Sarani M (2020) cytotoxicity and antifungal studies of biosynthesized zinc oxide nanoparticles using extract of Prosopis farcta fruit. Green Chem Lett Rev 13(1):27–33

    CAS  Google Scholar 

  • Möhler JS, Sim W, Blaskovich MA, Cooper MA, Ziora ZM (2018) Silver bullets: a new lustre on an old antimicrobial agent. Biotechnol Adv 36(5):1391–1411

    Google Scholar 

  • Monowar T, Rahman MdS, Bhore SJ, Raju G, Sathasivam KV (2018) Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multi drug resistant bacteria. Molecules 23:3220

    Google Scholar 

  • Moraes Moreira Carraro TC, Altmeyer C, Maissar Khalil N, Mara Mainardes R (2017) Assessment of in vitro antifungal efficacy and in vivo toxicity of Amphotericin B-loaded PLGA and PLGA-PEG blend nanoparticles. J Mycol Med 27:519–529

    CAS  Google Scholar 

  • Moyes DL, Richardson JP, Naglik JR (2015) Candida albicans epithelial interactions and pathogenicity mechanisms, scratching the surface. Virulence 6:338–346

    CAS  Google Scholar 

  • Mtibaa L, Fakhfakh N, Kallel A, Belhadj S, Belhaj SN, Bada N, Kallel K (2017) Vulvovaginal candidiasis: etiology, symptomatology and risk factors. J Mycol Med 27(2):153–158

    CAS  Google Scholar 

  • Munoz-Escobar A, Reyes-Lopez SY (2020) Antifungal susceptibility of Candida species to copper oxide nanoparticles on polycaprolactone fibers (PCL-CuONps). PLoS ONE 15(2):e0228864

    CAS  Google Scholar 

  • Muthamil S, Devi VA, Balasubramaniam B, Balamurugan K, Pandian SK (2018) Green synthesized silver nanoparticles demonstrating enhanced in vitro and in vivo antibiofilm activity against Candida spp. J Basic Microbiol 58(4):343–357

    CAS  Google Scholar 

  • Nahar K, Aziz S, Bashar MS, Haque MdA, Al-Reza SMd (2020) Synthesis and characterization of silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. Int J Nano Dimens 11(1):88–89

    CAS  Google Scholar 

  • Nett JE (2018) Special issues: Candida and candidiasis. J Fungi 4:74

    Google Scholar 

  • Ngugen NYT, Grelling N, Wettland CL, Rosairo R, Liu H (2018) Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts and biofilms. Sci Rep 8:16260

    Google Scholar 

  • Nindawat S, Agrawal V (2019) Fabrication of silver nanoparticles using Arnebia hispidissima (Lehm). A.DC. root extract and unravelling their potential biomedical applications. Artif Cells Nanomed Biotechnol 47:166–180

    CAS  Google Scholar 

  • Ogungemi SO, Zhang F, Abdallah Y, Zhang M, Wang Y, Sun G, Qiu W, Li B (2019) Biosynthesis and characterization of magnesium oxide and manganese dioxide nanoparticles using Matricaria Chamomilla leaf extract and its inhibitoru effect on Acidovorax oryzae strain RS-2. Artif Cells Nanomed Biotechnol 47(1):2230–2239

    Google Scholar 

  • Olusegun-Joseph TS, Killaney VM (2016) Survey of possible pathogenic organisms found in urine and vaginal swab samples of selected female population in Lagos. Nigeria Int J Biol Chem Sci 10(4):1840–1852

    Google Scholar 

  • Pandurangan DK, Bodagala P, Palanirajan VK, Govindaraj S (2016) Formulation and evaluation of voriconazole ophthalmic solid lipid nanoparticles in situ gel. Int J Pharmaceut Invest 6(1):56

    CAS  Google Scholar 

  • Panpaliya NP, Dahake PT, Kale YJ, Dadpe MV, Kendre SB, Siddiqi AG, Maggari UR (2019) In vitro evaluation of antimicrobial property of silver nanoparticles and chlorhexidine against five different oral pathogenic bacteria. Saudi Dent J 31:76–83

    Google Scholar 

  • Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD (2016) Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis 62:e1–e50

    Google Scholar 

  • Patil S, Rao RS, Majumdar B, Anil S (2015) Clinical appearance of oral Candida infection and therapeutic strategies. Front Microbiol 6:1391

    Google Scholar 

  • Paul S, Mohanram K, Kannan I (2018a) Antifungal activity of Curcumin-silver nanoparticles against fluconazole resistant clinical isolates of Candida species. AYU 39:182–186

    Google Scholar 

  • Paul S, Mohanram K, Kannan I (2018b) Antifungal activity of curcumin-silver nanoparticles against fluconazole-resistant clinical isolates of Candida species. AYU 39:182

    Google Scholar 

  • Punjabi K, Mehta S, Shavan R, Chitalia V, Deogharkar D, Deshpande S (2018) Efficiency of biosynthesized silver and zinc nanoparticles against multi-drug resistant pathogens. Front Microbiol 9:2207

    Google Scholar 

  • Qais FA, Khan MSA, Ahmad I, Althubiani AS (2019) Potential of nanoparticles in combating Candida infections. Lett Drug Des Discovery 16:478–491

    CAS  Google Scholar 

  • Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y (2018) Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed 13:3311–3327

    CAS  Google Scholar 

  • Radhakrishnan VS, Dwivedi SP, Siddiqui MH, Prasad T (2018a) In vitro studies on oxidative stress-independent, Ag nanoparticles induced cell toxicity of Candida albicans, an opportunistic pathogens. Int J Nanomed 13:91–96

    CAS  Google Scholar 

  • Radhakrishnan VS, Mudian MKR, Kumar M, Dwivedi SP, Singh SP, Prasad T (2018b) Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicities in fungal pathogen (Candida albicans). Inter J Nanomed 13:2647–2663

    CAS  Google Scholar 

  • Raja A, Ashokkumar S, Marthandam RP, Jayachandiran J, Khatiwada CP, Kariyarasu K, Raman RG, Swaminathan M (2018) Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divariacata and its photocatalytic and antimicrobial activity. J Photochem Photobiol B 181:53–58

    CAS  Google Scholar 

  • Rao TN, Babji RP, Ahmad N, Khan RA, Hassan I, Shahzad SA, Husain FM (2019) Green synthesis and structural classification of Acacia nilotica mediated-silver doped titanium oxide (Ag/TiO2) spherical nanoparticles: assessment of its antimicrobial and anticancer activity. Saudi J Biol Sci 26:1385–1391

    CAS  Google Scholar 

  • Rasli NI, Basri H, Harun Z (2020) Zinc oxide from aloe vera extract: two-level factorial screening of biosynthesis parameters. Heliyon 6:e03156

    Google Scholar 

  • Richardson JP, Ho J, Naglik JR (2018) Candida-epithelial interactions. J Fungi (Basel). https://doi.org/10.3390/jof4010022

    Article  Google Scholar 

  • Rozalska B, Sadowska B, Budzyriska A, Bernat P, Rozalska S (2018) Biogenic nanosilver synthesized in Metarhizium robersii waste mycelium extract- as a modulator of Candida albicans morphogenesis, membrane lipidome and biofilm. PLoS ONE 13:e0194254

    Google Scholar 

  • Salati S, Doudi M, Madani M (2018) The biological synthesis of silver nanoparticles by mango plant extract and its anti-Candida effects. J Appl Biotechnol Rep 5(4):157–161

    CAS  Google Scholar 

  • Sangare I, Sirima C, Bamba S, Zida A, Cisse M, Bazie WW, Sanou S, Dao B, Menan H, Guiguemde RT (2018) Prevalence of Vulvovaginal candidiasis in pregnancy at three health centers in Burkina faso. J Med Mycol 28(1):186–192

    CAS  Google Scholar 

  • Sanguinetti M, Posteraro B, Lass-Florl C (2015) Antifungal drug resistamce among Candida species: mechanisms and clinical impact. Mycoses 582(S2):2–13

    Google Scholar 

  • Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB, Alves SH, Schaffazick SR, Cruz L (2013) Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C 33(3):1389–1394

    CAS  Google Scholar 

  • Saravanan M, Arokiyaraj S, Lakshmi T, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Micro Pathog 117:68–72

    CAS  Google Scholar 

  • Saruchi TP, Kumar V (2019) Kinetics and thermodynamics studies for removal of methylene blue dye by biosynthesized copper oxide nanoparticles and its antibacterial activity. J Environ Health Sci Eng 17:367–376

    CAS  Google Scholar 

  • Shobha G, Vinutha M, Ananda S (2014) Biological synthesis of copper nanoparticles and its impacta review. Int J Pharma Sci Invent 3(8):28–38

    Google Scholar 

  • Silva S, Hayes AJ, Henriques M, Oliveira R (2011a) Candida glabrata and Candida albicans co-infection of an in vitro oral epithelium. J Oral Pathol Med 40(5):421–427

    Google Scholar 

  • Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2011b) Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 19:241–247

    CAS  Google Scholar 

  • Singh A, Verma R, Murari A, Agrawal A (2014) Oral candidiasis: An overview. J Oral Maxillofacial Pathol 18(1):S81–S85

    Google Scholar 

  • Singh DK, Kumar J, Sharma VK, Verma SK, Singh A, Kumari P, Kharwar RN (2018) Mycocynthesis of bacterial silver and polymorphic gold nanoparticles: physiochemical variation effects and mechanism. Nanomedicine 13(2):191–207

    CAS  Google Scholar 

  • Sobel JD (2007) Vulvovaginal candidiasis. The Lancet 369(9577):1961–1971

    Google Scholar 

  • Soliman H, Elsayed A, Dyaa A (2018) Antimicrobial activity of silver nanoparticles biosynthesized by Rhodotorula sp. Strain ATL 72. Egyptian J Basic Appl Sci 5:228–233

    Google Scholar 

  • Sousa ME, Santos RCV (2017) Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb pathog 104:125–132

    Google Scholar 

  • Spadari CC, de Bastiani FWM, Lopes LB, Ishida K (2019) Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int J Nanomed 14:5187–5199

    CAS  Google Scholar 

  • Sun D, Sun P, Li H, Zhang M, Liu G, Strickland AB, Chen Y, Fu Y, Xu J, Yosri M, Nan Y, Zhou H, Zhang X, Shi M (2019) Fungal dissemination is limited by liver macrophage filtration of the blood. Nat Comm 10:1

    Google Scholar 

  • Taei M, Chadeganipour M, Mohammadi R (2019) An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples: a combination of various molecular techniques for identification of etiologic agents. BMC Res Notes 12:779

    Google Scholar 

  • Taghavizadeh Yazdi ME, Khara J, Sadeghnia HR, Esmaeilzadeh Bahabadi S, Darroudi M (2018) Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Res Chem Intermed 44(2):1325–1334

    CAS  Google Scholar 

  • Tang S, Zheng J (2018) Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater 7:1701503

    Google Scholar 

  • Tariq F, Ahmed N, Afzal M, Khan MAU, Zeshan B (2020) Synthesis, characterization and antimicrobial activity of Bacillus subtilis-derived silver nanoparticles against multi drug resistant bacteria Jundishapur. J Microbiol 13(5):e91934

    Google Scholar 

  • Tasca F, Antiochia R (2020) Biocide activity of green Quercetin-mediated synthesized silver nanoparticles. Nanomaterials (Basel) 10(5):909

    CAS  Google Scholar 

  • Turakhia B, Chikkala S, Shah S (2019) Novelty of biosynthesized iron nanoparticles in nanocoated surgical cotton: a green chemistry. Adv 2019:9825969

    Google Scholar 

  • Vazquez JA, Baxa D, Wierman M, Obeid K, Vager D, Manavathu E (2014) Molecular characterization and in vitro antifungal susceptibility of Candida glabrata clinical isolates with reduced echinocandin susceptibility and high level multi-azole resistance. Clin Microbiol 3:4

    Google Scholar 

  • Wachtler B, Citiulo F, Jablonowski N, Forster S, Dalle F, Schaller M, Wilson D, Hube B (2012) Candida albicans-epithelial interactions: dissecting the roles of active penetration, induced endocytosis and host factors on the infection process. PLoS ONE 7:e36952

    Google Scholar 

  • Wani IA, Ahmad T, Manzoor N (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B 101:162–170

    CAS  Google Scholar 

  • Willems HME, Ahmed SS, Liu J, Xu Z, Peters BM (2020) Vulvovaginal candidiasis: a current understanding and burning questions. J fungi 6:27

    Google Scholar 

  • Wisplinghoff H, Elobers J, Geurtz L, Stefanik D, Major Y, Edmond MB, Wenzel RP, Seifert H (2014) Nosocomial bloodstream infections due to Candida spp. in the USA: species distribution, clinical features and antifungal susceptibilities. Int J Antimicrob Agents 43:78–81

    CAS  Google Scholar 

  • Wypig M, Czarnecka J, Swiecimska M, Dahm H, Rai M, Golinska P (2018) Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World J Biotechnol 34:23

    Google Scholar 

  • Yang Z, Chen M, Yang M, Chen J, Fang W, Xu P (2014) Evaluating the potential of cubosomal nanoparticles for oral delivery of amphotericin B in treating fungal infection. Int J Nanomed 9:327–336

    Google Scholar 

  • Yasir M, Singh J, Tripathi MK, Singh P, Shrivastava R (2017) Green synthesis of silver nanoparticles using leaf extract of common arrowhead houseplant and its anticandidal activity. Phcog Mag 13:S840–S844

    Google Scholar 

  • Yousaf H, Mehmood A, Ahmad KS, Raffi M (2020) Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Meter Sci Eng C 112:110901

    CAS  Google Scholar 

  • Zhang X-F, Liu Z-G, Shen W, Gurunathan S (2016) Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17:1534

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeka Innocent Nweze.

Ethics declarations

Conflict of interest

Authors received no funding for this work and have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mba, I.E., Nweze, E.I. The use of nanoparticles as alternative therapeutic agents against Candida infections: an up-to-date overview and future perspectives. World J Microbiol Biotechnol 36, 163 (2020). https://doi.org/10.1007/s11274-020-02940-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02940-0

Keywords

Navigation