Skip to main content
Log in

Early reprecipitation of sulfate salts in coal biodesulfurization processes using acidophilic chemolithotrophic bacteria

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

This study evaluated the effect of three sulfate salt-based culture media on the reprecipitation of sulfur under the action of two types of bacterial inoculum, a pure strain of Acidithiobacillus ferrooxidans (ATCC 23270) and a consortium of this strain and Acidithiobacillus thiooxidans (ATCC 15494), in a biodesulfurization process for coal (particle size < 0.25 mm) from the ‘La Guacamaya’ mine (Puerto Libertador, Córdoba, Colombia). All of the experiments were periodically monitored, with measurements taken of pH, cell concentration, iron concentration, and pyrite oxidation. Additionally, mineralogical analyses were conducted on the initial and final coal samples, through scanning electron microscopy with an energy-dispersive X-ray spectrometer. The results showed that sulfate reprecipitation occurred primarily, and nearly entirely, during the first 3 days of the process. While all the treatments obtained high levels of mineral oxidation, the reprecipitation processes decreased in media with low concentrations of sulfate, leading to the higher final removal of inorganic sulfur. The bioassays revealed that after 15 days, the maximum pyrite oxidation (86%) and inorganic sulfur removal (53%) was obtained with the treatments using the Kos and McCready culture media. The bacteria evaluated were found to have a great ability to adapt to very simple culture media with minimal nutrient concentrations, and even with some nutrients absent (as in the case of magnesium).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguirre M (2012) Extracellular polymeric substances (EPS) production in Sulfobacillus thermosulfidooxidans and its relevance on attachment to metal sulfides. Master’s thesis. Universidad Nacional de Colombia.

  • APHA (1992) American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, DC

  • ASTM D2492 (2007a) Standard test method for forms of sulfur in coal. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D2492-02R07

  • ASTM D3172 (2007b) Standard practice for proximate analysis of coal and coke. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D3172-07A

  • ASTM D3173 (2008) Standard test method for moisture in the analysis sample of coal and coke. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D3173-03R08

  • ASTM D3174 (2011a) Standard test method for ash in the analysis sample of coal and coke from coal. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D3174-11

  • ASTM D3175 (2011b) Standard test method for volatile matter in the analysis sample of coal and coke. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D3175-11

  • ASTM D4239 (2011c) Standard test method for sulfur in the analysis sample of coal and coke using high temperature tube furnace combustion. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D4239-11

  • ASTM D5865 (2011d) Standard test method for gross calorific value of coal and coke. ASTM International, West Conshohocken, PA. https://www.astm.org. https://doi.org/10.1520/D5865-11a

  • Babcan J (1971) Synthesis of jarosite KFe3(SO4)2(OH)6. Goel Zb 22 (2): 299–304

    CAS  Google Scholar 

  • Baruah M, Kotoky P, Borah G (2003) Distribution and nature of organic/mineral bound elements in Assam coals, India. Fuel 82:1783–1791

    Article  CAS  Google Scholar 

  • Bhupendra S, Barun K (2019) Desulfurization of high sulfur Indian coal by oil agglomeration using Linseed oil. Powder Technol 342:690–697

    Article  CAS  Google Scholar 

  • Caicedo G, Márquez M (2010) Mecanismo de selección de consorcios bacterianos compatibles con A. ferrooxidans y A. thiooxidans en procesos de biodesulfurización de carbón. Rev Fac Ing Univ Antioquia 52:88–94

    CAS  Google Scholar 

  • Caicedo G, Márquez M (2013) Effect of chloride salts on biodesulfurization process of a colombian coal. Rev Fac Ing Univ Antioquia 68:115–123

    Google Scholar 

  • Caicedo G, Márquez M, Moreno C (2011) Influencia de la concentración de hierro y pH iniciales en un proceso de biodesulfurización de carbón – ensayos a nivel de laboratorio. Rev Colomb Biotechnol 13(2):199–209

    Google Scholar 

  • Cardona I, Márquez M (2009) Biodesulfurization of two Colombian coals with native microorganisms. Fuel Process Technol 90:1099–1106

    Article  CAS  Google Scholar 

  • Carranza F, García M (1990) Kinetic comparison of support materials in the bacteria ferrous iron oxidation in a packed-bed column. Biorecovery 2:15–27

    CAS  Google Scholar 

  • Casas JM (2000) Modelacion cinetica de la precipitacion de hierro como jarosita en soluciones lixiviantes utilizando la bacteria Thiobacillus ferrooxidans. XIV Chilean congress of chemical engineering.

  • Chen Y, He Y, Ye W, Sui W, Xiao M (2013) Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite. Transactions of Nonferrous Metals Society of China, Elsevier

    Book  Google Scholar 

  • Crundwell FK (2001) How do bacteria interact with minerals? In: Ciminelli VST, Garcia O Jr (eds) International biohydrometallurgy symposium. Elsevier, Amsterdam, pp 149–157

    Google Scholar 

  • Cunha ML, Gahan CS, Menad N, Sandström A (2008) Possibilities to use oxidic byproducts for precipitation of Fe/As from leaching solution for subsequent base metal recovery. Miner Eng 21:38–47

    Article  CAS  Google Scholar 

  • Donlan R (2002) Biofilms: microbial life on surfaces. Emerging Infect Dis 8:881–890

    Article  PubMed  PubMed Central  Google Scholar 

  • Dutrizac JE (1980) The physical chemistry of iron precipitation in the zinc industry. In: Cigan JM, Mackey TS, Okeefe TJ (Eds) Lead–zinc–tin 80. AIME, New York, pp 532–564

    Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE, Franson MAH (2005) 3500-Fe. Standard methods for the examination of water and wastewater. 21st ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

  • Fitzpatrick RW, Shand P (2008) Inland acid sulfate soils: overview and conceptual models. In: Fitzpatrick R, Shand P (eds) Inland acid sulfate soil systems across Australia. Perth, Australia

    Google Scholar 

  • Gleisner M, Herbert RB, Frogner P (2006) Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen. Chem Geol 225:16–29

    Article  CAS  Google Scholar 

  • Gómez J, Cantero D (2005) Biooxidación del ion ferroso. Fundamentos y perspectivas de las tecnologías Biomineras 2:25–41

    Google Scholar 

  • Gómez E, Ballester A, González F, Blázquez ML (1999) Leaching capacity of a new extremely thermophilic microorganism, Sulfolobus rivotincti. Hydrometallurgy 52:349–366

    Article  Google Scholar 

  • Gramp J, Jones F, Bigham J, Tuovinen O (2008) Monovalent cation concentrations determine the types of Fe(III) hydroxysulfate precipitates formed in bioleach solutions. Hydrometallurgy 94:29–33

  • Harahuc L, Lizama H, Suzuki I (2000) Selective inhibition of the oxidation of ferrous iron or sulfur in Thiobacillus ferrooxidans. Appl Environ Microbiol 1031–1037.

  • He H, Hong FF, Tao XX, Li L, Ma CY, Zhao YD (2012) Biodesulfurization of coal with Acidithiobacillus caldus and analysis of the interfacial interaction between cells and pyrite. Fuel Process Technol 101:73–77

    Article  CAS  Google Scholar 

  • Hone HJ, Beyer M, Ebner HG, Klein J, Juntgen H (1987) Microbial desulphurization of coal-development and application of a slurry reactor. Chem Eng Technol 10:173–176

    Article  Google Scholar 

  • Jorjani E, Chehreh S, Mesroghli Sh (2007) Prediction of microbial desulfurization of coal using artificial neural networks. Miner Eng 20:1285–1292

    Article  CAS  Google Scholar 

  • Kaksonen AH, Morris C, Rea S, Li J, Wylie J (2014a) Biohydrometallurgical iron oxidation and precipitation: part I-effect of pH on process performance. Hydrometallurgy 147:255–263

    Article  CAS  Google Scholar 

  • Kaksonen AH, Morris C, Rea S, Li J, Usher KM (2014b) Biohydrometallurgical iron oxidation and precipitation: part II: jarosite precipitate characterisation and acid recovery by conversion to hematite. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2014.04.015

    Article  Google Scholar 

  • Kamimura K, Higashino E, Kanao T, Sugio T (2005) Effects of inhibitors and NaCl on the oxidation of reduced inorganic sulfur compounds by a marine acidophilic, sulfur-oxidizing bacterium A. thiooxidans. Extremophiles 9:45–51

    Article  CAS  PubMed  Google Scholar 

  • Kiani MH, Ahmadi A, Zilouei H (2014) Biological removal of sulphur and ash from fine-grained high pyritic sulphur coals using a mixed culture of mesophilic microorganisms. Fuel 13:89–95

    Article  CAS  Google Scholar 

  • Kinzler K, Gehrke T, Telegdi J, Sand W (2003) Bioleaching: a result of interfacial process caused by extracellular polymeric substances (EPS). Hydrometallurgy 71:83–88

    Article  CAS  Google Scholar 

  • Kos CH, Bijleveld W, Grotenhuis T, Box P, Kuenen JG, Poorter RPE (1983) Composition of mineral salts medium for microbial desulfurization of coal. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Canada Center for Mineral and Energy Technology, Ottawa

    Google Scholar 

  • Liao Y, Zhou L, Bai S, Liang J, Wang S (2009) Occurrence of biogenic schwertmannite in sludge bioleaching environments and its adverse effect on solubilization of sludge-borne metals. Appl Geochem 24:1739–1746

    Article  CAS  Google Scholar 

  • Lodge R, Hinshelwood C (1939) Physicochemical aspects of bacterial growth. Part V. Influence of magnesium on the lag phase in the growth of Bact. Zactis aerogenes in synthetic media containing phosphate. J. Chem. Soc. 1943:213–219

    Google Scholar 

  • Longfei T, Songjiang C, Dongjiao G, Xiangnan Z, Huan H, Xiuxiang T (2020) Effect of removal organic sulfur from coal macromolecular on the properties of high organic sulfur coal. Fuel 259:116264

    Article  CAS  Google Scholar 

  • López AE (2012) Estudio experimental de permeabilidad de materiales depositados en pilas de lixiviación. Universidad de Chile. Master’s thesis.

  • Manafi Z (2002) Column bioleaching of agglomerated low-grade copper ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Islamic Azad University of Jahrom, Iran. Master’s thesis.

  • McCready RGL, Wadden D, Marchbank A (1986) Nutrient requirements for the in-place leaching of uranium by Thiobacillus ferrooxidans. Hydrometallurgy 17:61–71

    Article  CAS  Google Scholar 

  • Munkhtsetseg S, Khomich A, Poklonskii N (2007) Infrared absorption spectra of coals with different degrees of coalification. J Appl Spectrosc 74(3):338–343

    Article  CAS  Google Scholar 

  • Nurmi P, Özkaya B, Sasaki K, Kaksonen AH, Riekkola-Vanhanen M, Tuovinen OH, Puhakka JA (2010) Biooxidation and precipitation for iron and sulfate removal from heap bioleaching effluent streams. Hydrometallurgy 101:7–14

    Article  CAS  Google Scholar 

  • Ohmura N, Tsugita K, Koizumi J, Saiki H (1996) Sulfur-binding protein of flagella of Thiobacillus ferrooxidans. J Bacteriol 178:5776–5780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oinuma K, Kodama H (1967) Use of infrared absorption spectra for identification of clay minerals in sediments. J Tokyo Univ General Educ (Nat Sci) 7:1–23

    Google Scholar 

  • Olson GJ (1991) Rate of pyrite bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory comparison. Appl Environ Microbiol 57(3):642–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prescott ML, Harley JP, Klein DA (2004) Microbiología. McGraw Hill Interamericana, Madrid, p 167

    Google Scholar 

  • Qiu Y, Zhang Q, Tian Y, Zhang J, Cao J, Xiao T (2011) Composition and structure of Luxing coal with different particle sizes. Petrol Coal 53(1):45–55

    Google Scholar 

  • Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez C (2004) Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 70:4491–4498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149:401–405

    Article  CAS  Google Scholar 

  • Rohwerder T, Sand W (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. Microbial Process Metal Sulfides 2:35–58

    Article  Google Scholar 

  • Rossi G (1990) Biohydrometallurgy. Hamburg, McGraw Hill Book Company

    Google Scholar 

  • Saikia B, Boruah RK, Gogoi PK (2007) FT-IR and XRD analysis of coal from Makum coalfield of Assam. J Earth Syst Sci 116(6):575–579

    Article  CAS  Google Scholar 

  • Sampson MI, Phillips CV, Ball AS (2000) Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis. Miner Eng 13(6):643–656

    Article  CAS  Google Scholar 

  • Sand et al (1999) Direct versus indirect bioleaching. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century Part A. Elsevier, Amsterdam, pp 27–49

    Google Scholar 

  • Sarcheshmehpour Z, Lakzian A, Fotovat A, Reza BA, Hosain HG, Seyed- Bagheri SA (2009) The effects of clay particles on the efficiency of bioleaching process. Hydrometallurgy 98:33–37

    Article  CAS  Google Scholar 

  • Schiavon N (2007) Kaolinisation of granite in an urban environment. Environ Geol 52:399–407

    Article  CAS  Google Scholar 

  • Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. Microbial Process Metal Sulfides 1:3–34

    Article  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77(5):642–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonibare O, Haeger T, Foley SF (2010) Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 35:5347–5353

    Article  CAS  Google Scholar 

  • Suraj G, Iyer CSP, Rugmini S, Lalithambika M (1997) The effect of micronization on kaolinites and their sorption behavior. Appl Clay Sci 12:111–130

    Article  CAS  Google Scholar 

  • Tillet D, myerson a (1987) the removal of pyritic sulfur from coal employing Thiobacillus ferrooxidans in a packed column reactor. Biotechnol Bioeng 24:146–150

    Article  Google Scholar 

  • Tuovinen O, Kelly D (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Zeitschrift für allgemeine Mikrobiologie 12(4):311–346

    CAS  PubMed  Google Scholar 

  • Wang M, Zhou L (2012) Simultaneous oxidation and precipitation of iron using jarosite immobilized Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy 125–126:152–156

    Article  CAS  Google Scholar 

  • Wang W, Qin Y, Sang S, Jiang B, Guo Y, Zhu Y, Fu X (2006) Partitioning of minerals and elements during preparation of Taixi coal, China. Fuel 85:57–67

    Article  CAS  Google Scholar 

  • Webb M (1949) The influence of magnesium on cell division. J Gen Microbiol 2(3):275–287

    Article  Google Scholar 

  • Ye J, Zhang P, Zhang G, Wang S, Nabi M, Zhang Q, Zhang H (2018) Biodesulfurization of high sulfur fat coal with indigenous and exotic microorganisms. J Cleaner Prod 197(1):562–570

    Article  CAS  Google Scholar 

  • Yu ZJ, Yu RL, Liu AJ, Liu J, Zeng WM, Liu XD, Qiu GZ (2017) Effect of pH values on extracellular protein and polysaccharide secretions of Acidithiobacillus ferrooxidans during chalcopyrite bioleaching. Trans Nonferrous Metals Soc China 27(2):406–412

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like thank the National University of Colombia, Argos and Administrative Department of Science, Technology and Innovation of Colombia for the supports. In addition, the authors appreciate the assistance from Coals Laboratory and CIMEX of National University of Colombia, Medellín and Centricol Industries for providing the facilities to fulfill the experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Gissel Duarte Briceño.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte Briceño, P.G., Caicedo Pineda, G.A. & Márquez Godoy, M.A. Early reprecipitation of sulfate salts in coal biodesulfurization processes using acidophilic chemolithotrophic bacteria. World J Microbiol Biotechnol 36, 81 (2020). https://doi.org/10.1007/s11274-020-02855-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02855-w

Keywords

Navigation