Skip to main content
Log in

Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Prokaryotic and eukaryotic microbes thrive successfully in stressful environments such as high osmolarity, acidic or alkali, solar heat and u.v. radiation, nutrient starvation, oxidative stress, and several others. To live under these continuous stress conditions, these microbes must have mechanisms to protect their proteins, membranes, and nucleic acids, as well as other mechanisms that repair nucleic acids. The stress responses in bacteria are controlled by master regulators, which include alternative sigma factors, such as RpoS and RpoH. The sigma factor RpoS integrates multiple signals, such as the general stress response regulators and the sigma factor RpoH regulates the heat shock proteins. These response pathways extensively overlap and are induced to various extents by the same environmental stresses. In eukaryotes, two major pathways regulate the stress responses: stress proteins, termed heat shock proteins (HSP), which appear to be required only for growth during moderate stress, and stress response elements (STRE), which are induced by different stress conditions and these elements result in the acquisition of a tolerant state towards any stress condition. In this review, the mechanisms of stress resistance between prokaryotic and eukaryotic microbes will be described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiassa V, Barnes AI, Albesa I (2010) Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochem Biophys Res Commun 393:84–88

    Article  CAS  Google Scholar 

  • Albrecht D, Guthke R, Brakhage AA, Kniemeyer O (2010) Integrative analysis of the heat shock response in Aspergillus fumigatus. BMC Genomics 11:32

    Article  CAS  Google Scholar 

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology 148:2599–2606

    CAS  Google Scholar 

  • Arcangeli C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids: approach to monitoring of u.v.-B irradiation stress on Antarctic fungus. Biopolymers (Biospectroscopy) 57:179–186

    Article  CAS  Google Scholar 

  • Arguelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Article  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  CAS  Google Scholar 

  • Birrell GW, Giaever G, Chu AM, Davis RW, Brown JM (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting u.v. radiation sensitivity. Proc Natl Acad Sci U S A 98:12608–12613

    Article  CAS  Google Scholar 

  • Bjedov I et al (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409

    Article  CAS  Google Scholar 

  • Bonini BM, Van Dijck P, Thevelein JM (2004) Trehalose metabolism: enzymatic pathways and physiological functions. In: Brambl R, Marzluf GA (eds) The Mycota III biochemistry and molecular biology, 2nd edn. Springer, Berlin, pp 291–332

    Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259:1760–1763

    Article  CAS  Google Scholar 

  • Bruno-Barcena JM, Azcarate-Peril MA, Hassan HM (2010) Role of antioxidant enzymes in bacterial resistance to organic acids. Appl Environ Microbiol 76:2747–2753

    Article  CAS  Google Scholar 

  • Burnie JP, Carter TL, Hodgetts SJ, Matthews RC (2006) Fungal heat-shock proteins in human disease. FEMS Microbiol Rev 30:53–88

    Article  CAS  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    Article  CAS  Google Scholar 

  • Carey CM, Kostrzynska M, Thompson S (2009) Escherichia coli O157:H7 stress and virulence gene expression on Romaine lettuce using comparative real-time PCR. J Microbiol Methods 77:235–242

    Article  CAS  Google Scholar 

  • Carruthers MD, Minion C (2009) Transcriptome analysis of Escherichia coli O157:H7 EDL933 during heat shock. FEMS Microbiol Lett 295:96–102

    Article  CAS  Google Scholar 

  • Causton HC et al (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    CAS  Google Scholar 

  • Chatterjee MT, Khalawan SA, Curran BPG (2000) Cellular lipid composition influences stress activation of the yeast general stress response element (STRE). Microbiology 146:877–884

    CAS  Google Scholar 

  • Chaturvedi V, Flynn T, Niehaus WG, Wong B (1996a) Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology 142(Pt 4):937–943

    Article  CAS  Google Scholar 

  • Chaturvedi V, Wong B, Newman SL (1996b) Oxidative killing of Cryptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J Immunol 156:3836–3840

    CAS  Google Scholar 

  • Chaturvedi V, Bartiss A, Wong B (1997) Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J Bacteriol 179:157–162

    CAS  Google Scholar 

  • Chen D et al (2003) Global transcriptional responses of fission yeast to environmental stress. Mol Biol Cell 14:214–229

    Article  CAS  Google Scholar 

  • Collinson LP, Dawes IW (1992) Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol 138:329–335

    CAS  Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  CAS  Google Scholar 

  • Crowe JH et al (1988) Interactions of sugars with membranes. Biochim Biophys Acta 947:367–384

    CAS  Google Scholar 

  • D’Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364

    Article  Google Scholar 

  • De Angelis M, Gobbetti M (2004) Environmental stress responses in Lactobacillus: a review. Proteomics 4:106–122

    Article  CAS  Google Scholar 

  • de Pinho CA, de Lourdes M, Polizeli TM, Jorge JA, Terenzi HF (2001) Mobilisation of trehalose in mutants of the cyclic AMP signalling pathway, cr-1 (CRISP-1) and mcb (microcycle conidiation), of Neurospora crassa. FEMS Microbiol Lett 199:85–89

    Article  Google Scholar 

  • de Smet KA, Weston A, Brown IN, Young DB, Robertson BD (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146(Pt 1):199–208

    Google Scholar 

  • De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem 219:179–186

    Article  Google Scholar 

  • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686

    Article  CAS  Google Scholar 

  • Dong T, Schellhorn HE (2010) Role of RpoS in virulence of pathogens. Infect Immun 78:887–897

    Article  CAS  Google Scholar 

  • Dukan S, Nystrom T (1998) Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12:3431–3441

    Article  CAS  Google Scholar 

  • Dutta K, Datta G, Verma NC (1996) Effect of nitrogen starvation on DNA repair in Saccharomyces cerevisiae. J Gen Appl Microbiol 42:27–37

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  CAS  Google Scholar 

  • Eleutherio ECA, Araujo PS, Panek AD (1993) Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30:591–596

    Article  CAS  Google Scholar 

  • Ellis RJ, van der Vies SM (1991) Molecular chaperones. Annu Rev Biochem 60:321–347

    Article  CAS  Google Scholar 

  • Estruch F (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev 24:469–486

    Article  CAS  Google Scholar 

  • Ferenci T (1999) Regulation by nutrient limitation. Curr Opin Microbiol 2:208–213

    Article  CAS  Google Scholar 

  • Ferenci T, Spira B (2007) Variation in stress responses within a bacterial species and the indirect costs of stress resistance. Ann NY Acad Sci 1113:105–113

    Article  CAS  Google Scholar 

  • Fillinger S et al (2001) Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 147:1851–1862

    CAS  Google Scholar 

  • Fischer D, Teich A, Neubauer P, Hengge-Aronis R (1998) The general stress sigma factor σs of Escherichia coli is induced during diauxic shift from glucose to lactose. J Bacteriol 180:6203–6206

    CAS  Google Scholar 

  • Fitt PS, Sharma N (1989) Induction of error-free DNA repair in Escherichia coli by heat shock or nutritional stress. Curr Microbiol 19:61–65

    Article  CAS  Google Scholar 

  • Foster PL (2007) Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373–397

    Article  CAS  Google Scholar 

  • Garreau H, Hasan RN, Renault G, Estruch F, Boy-Marcotte E, Jacquet M (2000) Hyperphosphorylation of Msn2p and Msn4p in response to heat shock and diauxic shift is inhibited by cAMP in Saccharomyces cerevisiae. Microbiology 146:2113–2120

    CAS  Google Scholar 

  • Gasch AP, Werner-Washburne M (2002) The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics 2:181–192

    Article  CAS  Google Scholar 

  • Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  Google Scholar 

  • Georgepoulos C, Ang D, Maddock A, Raina S, Lipinska B, Zylicz M (1990) Heat Shock Response of Escherichia coli. In: Drlica K, Riley M (eds) The bacterial chromosome. American Society for Microbiology, Washington

    Google Scholar 

  • Giuliodori AM, Gualerzi CO, Soto S, Vila J, Tavio MM (2007) Review on bacterial stress topics. Ann NY Acad Sci 1113:95–104

    Article  CAS  Google Scholar 

  • Givskov M, Eberl L, Molin S (1994) Responses to nutrient starvation in Pseudomonas putida KT2442: two-dimensional electrophoretic analysis of starvation- and stress-induced proteins. J Bacteriol 176:4816–4824

    CAS  Google Scholar 

  • Gocheva YG, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB (2006) Cell response of Antarctic and temperate strains of Penicillium spp. to different growth temperature. Mycol Res 110:1347–1354

    Article  CAS  Google Scholar 

  • Godocikova J, Zamocky M, Buckova M, Obinger C, Polek B (2010) Molecular diversity of katG genes in the soil bacteria Comamonas. Arch Microbiol 192:175–184

    Article  CAS  Google Scholar 

  • Goodson M, Rowbury RJ (1990) Habituation to alkali and increased u.v.-resistance in DNA repair-proficient and -deficient strains of Escherichia coli grown at pH 9.0. Lett Appl Microbiol 11:123–125

    Article  CAS  Google Scholar 

  • Groat RG, Schultz JE, Zychlinsky E, Bockman A, Matin A (1986) Starvation proteins in Escherichia coli: kinetics of synthesis and role in starvation survival. J Bacteriol 168:486–493

    CAS  Google Scholar 

  • Gross CA (1996) Function and regulation of the heat-shock proteins. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, pp 1382–1399

    Google Scholar 

  • Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    CAS  Google Scholar 

  • Hahne H et al (2010) A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J Bacteriol 192:870–882

    Article  CAS  Google Scholar 

  • Hallsworth JE, Magan N (1994) Effects of KCl concentration on accumulation of acyclic sugar alcohols and trehalose in conidia of three entomopathogenic fungi. Lett Appl Microbiol 18:8–11

    Article  CAS  Google Scholar 

  • Hallsworth JE, Magan N (1995) Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology 141:1109–1115

    Article  CAS  Google Scholar 

  • Harman GE, Jin X, Stasz TE, Peruzzotti G, Leopold AC, Taylor AG (1991) Production of conidial biomass of Trichoderma harzianum for biological control. Biol Control 1:23–28

    Article  Google Scholar 

  • Hartke A, Bouche S, Gansel X, Boutibonnes P, Auffray Y (1994) Starvation induced stress resistance in Lactococcus lactis subsp. lactis Il1403. Appl Environ Microbiol 60:3474–3478

    CAS  Google Scholar 

  • Hartke A, Bouche S, Laplace JM, Benachour A, Boutibonnes P, Auffray Y (1995) u.v.-inducible proteins and u.v.-induced cross-protection against acid, ethanol, H2O2 or heat treatments in Lactococcus lactis subsp. lactis. Arch Microbiol 163:329–336

    Article  CAS  Google Scholar 

  • Hecker M, Reder A, Fuchs S, Pagels M, Engelmann S (2009) Physiological proteomics and stress/starvation responses in Bacillus subtilis and Staphylococcus aureus. Res Microbiol 160:245–258

    Article  CAS  Google Scholar 

  • Heitman J (2005) Cell biology. A fungal Achilles’ heel. Science 309:2175–2176

    Article  CAS  Google Scholar 

  • Hengge-Aronis R (1996) Regulation of gene expression during entry into stationary phase. In: Neidhardt FC et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 1497–1512

    Google Scholar 

  • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control the σs (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395

    Article  CAS  Google Scholar 

  • Hengge-Aronis R, Klein W, Lange R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924

    CAS  Google Scholar 

  • Hengge-Aronis R, Lange R, Henneberg N, Fischer D (1993) Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol 175:259–265

    CAS  Google Scholar 

  • Henson JM, Butler MJ, Day AW (1999) The dark side of the mycelium: melanins of phytopathogenic fungi. Annu Rev Phytopathol 37:447–471

    Article  CAS  Google Scholar 

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio EC (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta 1760:340–346

    CAS  Google Scholar 

  • Higgins SM, Lilly WW (1993) Multiple responses to heat stress by the Basidiomycete Schizophillum commune. Current Microbiol 26:123–127

    Article  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  Google Scholar 

  • Hohmann S, Mager WH (2003) Yeast stress responses. Springer, Berlin

    Book  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115

    Article  CAS  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    Article  CAS  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein JM, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    Article  CAS  Google Scholar 

  • Hussain MA, Knight MI, Britz ML (2009) Proteomic analysis of lactose-starved Lactobacillus casei during stationary growth phase. J Appl Microbiol 106:764–773

    Article  CAS  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K, Komatsu Y (1998) Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl Environ Microbiol 64:4614–4617

    CAS  Google Scholar 

  • Jamieson DJ (1992) Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol 174:6678–6681

    CAS  Google Scholar 

  • Jenkins DE, Schultz JE, Matin A (1988) Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli. J Bacteriol 170:3910–3914

    CAS  Google Scholar 

  • Jenkins DE, Chaisson SA, Matin A (1990) Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol 172:2779–2781

    CAS  Google Scholar 

  • Jenkins DE, Auger EA, Matin A (1991) Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival. J Bacteriol 173:1992–1996

    CAS  Google Scholar 

  • Joseph TC, Rajan LA, Thampuran N, James R (2010) Functional characterization of trehalose biosynthesis genes from E. coli: an osmolyte involved in stress tolerance. Mol Biotechnol 46:20–25

    Article  CAS  Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Strøm AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J Bacteriol 174:889–898

    CAS  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AF (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci U S A 99:9727–9732

    Article  CAS  Google Scholar 

  • Kapoor M, Sveenivasan GM (1988) The heat shock response of Neurospora crassa: stress-induced thermotolerance in relation to peroxidase and superoxide dismutase levels. Biochem Biophys Res Commun 156:1097–1102

    Article  CAS  Google Scholar 

  • Kayingo G, Wong B (2005) The MAP kinase Hog1p differentially regulates stress-induced production and accumulation of glycerol and D-arabitol in Candida albicans. Microbiology 151:2987–2999

    Article  CAS  Google Scholar 

  • Koch B, Worm J, Jensen LE, Højberg O, Nybroe O (2001) Carbon limitation induces σs-dependent gene expression in Pseudomonas fluorescens in soil. Appl Environ Microbiol 67:3363–3370

    Article  CAS  Google Scholar 

  • Kouril T, Zaparty M, Marrero J, Brinkmann H, Siebers B (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369

    Article  CAS  Google Scholar 

  • Lacerda CM, Reardon KF (2009) Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. Brief Funct Genomic Proteomic 8:75–87

    Article  CAS  Google Scholar 

  • Lee J, Dawes IW, Roe JH (1995) Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Microbiology 141:3127–3132

    Article  CAS  Google Scholar 

  • Lengeler KB et al (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–784

    Article  CAS  Google Scholar 

  • Lewis JG, Learmonth RP, Watson K (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141:687–694

    Article  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol 143:1384–1394

    CAS  Google Scholar 

  • Lindquist S, Kim G (1996) Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. PNAS 93:5301–5306

    Article  CAS  Google Scholar 

  • Lynch SV, Brodie EL, Matin A (2004) Role and regulation of sigma S in general resistance conferred by low-shear simulated microgravity in Escherichia coli. J Bacteriol 186:8207–8212

    Article  CAS  Google Scholar 

  • Mackenzie KF, Singh KK, Brown AD (1988) Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol 134:1661–1666

    CAS  Google Scholar 

  • Mager WH, de Kruijff AJJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59:506–531

    CAS  Google Scholar 

  • Mager WH, Moradas Ferreira P (1993) Stress response of yeast. Biochem J 290:1–13

    CAS  Google Scholar 

  • Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    Google Scholar 

  • Martinez-Salazar JM et al (2009) The Rhizobium etli RpoH1 and RpoH2 sigma factors are involved in different stress responses. Microbiology-Sgm 155:386–397

    Article  CAS  Google Scholar 

  • Matallana-Surget S, Joux F, Raftery MJ, Cavicchioli R (2009) The response of the marine bacterium Sphingopyxis alaskensis to solar radiation assessed by quantitative proteomics. Environ Microbiol 11:2660–2675

    Article  CAS  Google Scholar 

  • Matin A (1991) The molecular basis of carbon-starvation-induced general resistance in Escherichia coli. Mol Microbiol 5:3–10

    Article  CAS  Google Scholar 

  • McCann MP, Kidwell JP, Matin A (1991) The putative σ factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173:4188–4194

    CAS  Google Scholar 

  • McCann MP, Fraley CD, Matin A (1993) The putative σ factor KatF is regulated posttranscriptionally during carbon starvation. J Bacteriol 175:2143–2149

    CAS  Google Scholar 

  • Medvedkova KA, Khmelenina VN, Suzina NE, Trotsenko YA (2009) Antioxidant systems of moderately thermophilic methanotrophs Methylocaldum szegediense and Methylococcus capsulatus. Microbiology 78:670–677

    Article  CAS  Google Scholar 

  • Mensonides FI, Brul S, Klis FM, Hellingwerf KJ, Teixeira de Mattos MJ (2005) Activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation. Appl Environ Microbiol 71:4531–4538

    Article  CAS  Google Scholar 

  • Miller CD, Mortensen WS, Braga GUL, Anderson AJ (2001) The rpoS gene in Pseudomonas syringae is important in surviving exposure to the near-u.v. in sunlight. Curr Microbiol 43:374–377

    Article  CAS  Google Scholar 

  • Miller CD et al (2004) Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-u.v. irradiation. Can J Microbiol 50:41–49

    Article  CAS  Google Scholar 

  • Mitchel REJ, Morrison DP (1982) Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary phase growth phase. Radiat Res 90:284–291

    Article  CAS  Google Scholar 

  • Mitchel REJ, Morrison DP (1983) Heat-shock induction of ultraviolet light resistance in Saccharomyces cerevisiae. Radiat Res 96:95–99

    Article  CAS  Google Scholar 

  • Morimoto RI (1993) Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410

    Article  CAS  Google Scholar 

  • Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  Google Scholar 

  • Muffler A, Barth M, Marschall C, Hengge-Aronis R (1997) Heat shock regulation of σs turnover: a role for DnaK and relationship between stress responses mediated by σs and σ32 in Escherichia coli. J Bacteriol 179:445–452

    CAS  Google Scholar 

  • Mulvey MR, Switala J, Borys A, Loewen PC (1990) Regulation of transcription of katE and katF in Escherichia coli. J Bacteriol 172:6713–6720

    CAS  Google Scholar 

  • Nagai H, Yano R, Erickson JW, Yura T (1990) Transcriptional regulation of the heat shock regulatory gene rpoH in Escherichia coli: involvement of a novel catabolite-sensitive promoter. J Bacteriol 172:2710–2715

    CAS  Google Scholar 

  • Neidhardt FC et al (eds) (1996) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington

    Google Scholar 

  • Nicholson WL, Law JF (1999) Method for purification of bacterial endospores from soils: u.v. resistance of natural Sonoran desert soil populations of Bacillus spp. with reference to Bacillus subtilis strain 168. J Microbiol Methods 35:13–21

    Article  CAS  Google Scholar 

  • Notley-McRobb L, Death A, Ferenci T (1997) The relationship between external glucose concentration and cAMP levels inside Escherichia coli: implications for models of phosphotransferase-mediated regulation of adenylate cyclase. Microbiology 143:1909–1918

    Article  CAS  Google Scholar 

  • Noventa Jordao MA et al (1999) Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology 145:3229–3234

    CAS  Google Scholar 

  • Noventa-Jordao MA et al (1999) Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology 145:3229–3234

    CAS  Google Scholar 

  • Nyström T, Neidhardt FC (1992) Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli. Mol Microbiol 6:3187–3198

    Article  Google Scholar 

  • Panek AD, Mattoon JR (1977) Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development. Arch Biochem Biophys 183:306–316

    Article  CAS  Google Scholar 

  • Pardasani D, Fitt PS (1989) Strain-dependent induction by heat shock of resistance to ultraviolet light in Escherichia coli. Curr Microbiol 18:99–103

    Article  Google Scholar 

  • Park J-I, Grant CM, Attfield PV, Dawes IW (1997) The freeze–thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway. App Environ Microbiol 63:3818–3824

    CAS  Google Scholar 

  • Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J (1999) Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast 15:191–203

    Article  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat shock protein Hsp104. Nature 372:475–478

    Article  CAS  Google Scholar 

  • Pereira CS, Lins RD, Chandrasekhar I, Freitas LC, Hunenberger PH (2004) Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J 86:2273–2285

    Article  CAS  Google Scholar 

  • Peterkofsky A, Gazdar C (1971) Glucose and the metabolism of adenosine 3’:5’-cyclic monophosphate in Escherichia coli. Proc Natl Acad Sci U S A 68:2794–2798

    Article  CAS  Google Scholar 

  • Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J (2000) The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255

    Article  CAS  Google Scholar 

  • Qu QH, Lee SJ, Boos W (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic Archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897

    Article  CAS  Google Scholar 

  • Rangel DEN (2006) Genetic and phenotypic variability of metarhizium anisopliae for virulence and tolerance to u.v.-B radiation and Heat. In: Department of Biology. Utah State University, Logan, p 299

  • Rangel DEN, Roberts DW (2007) Inducing u.v.-B tolerance of Metarhizium anisopliae var. anisopliae conidia results in a trade-off between conidial production and conidial stress tolerance. J Anhui Agric Univ 34:195–202

    Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2006a) Growth of Metarhizium anisopliae on non-preferred carbon sources yields conidia with increased u.v.-B tolerance. J Invertebr Pathol 93:127–134

    Article  CAS  Google Scholar 

  • Rangel DEN et al (2006b) Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. J Invertebr Pathol 93:170–182

    Article  Google Scholar 

  • Rangel DEN, Anderson AJ, Roberts DW (2008) Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and u.v.-B radiation in Metarhizium anisopliae conidia. Mycol Res 112:1362–1372

    Article  Google Scholar 

  • Rensing L, Monnerjahn C, Meyer U (1998) Differential stress gene expression during the development of Neurospora crassa and other fungi. FEMS Microbiol Lett 168:159–166

    Article  CAS  Google Scholar 

  • Rep M, Krantz M, Thevelein JM, Hohmann S (2000) The transcriptional response of Saccharomyces cerevisiae to osmotic shock. J Biol Chem 275:8290–8300

    Article  CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in arctic and antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Ruijter GJG et al (2003) Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 2:690–698

    Article  CAS  Google Scholar 

  • Ruis H, Schüller C (1995) Stress signaling in yeast. Bioessays 17:959–965

    Article  CAS  Google Scholar 

  • Saint-Ruf C, Matic I (2006) Environmental tuning of mutation rates. Environ Microbiol 8:193–199

    Article  CAS  Google Scholar 

  • Saint-Ruf C, Taddei F, Matic I (2004) Stress and survival of aging Escherichia coli rpoS colonies. Genetics 168:541–546

    Article  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) Hsp104 required for induced thermotolerance. Science 248:1112–1115

    Article  CAS  Google Scholar 

  • Sanchez Y, Taulien J, Borkovich KA, Lindquist S (1992) Hsp104 is required for tolerance to many forms of stress. EMBO J 11:2357–2364

    CAS  Google Scholar 

  • Sanchez Y, Parsell DA, Taulien J, Vogel JL, Craig EA, Lindquist S (1993) Genetic evidence for a functional relationship between Hsp104 and Hsp70. J Bacteriol 175:6484–6491

    CAS  Google Scholar 

  • Schüller C, Brewster JL, Alexander MR, Gustin MC, Ruis H (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J 13:4382–4389

    Google Scholar 

  • Schultz JE, Latter GI, Matin A (1988) Differential regulation by cyclic AMP of starvation protein synthesis in Escherichia coli. J Bacteriol 170:3903–3909

    CAS  Google Scholar 

  • Shashidhar R, Kumar SA, Misra HS, Bandekar JR (2010) Evaluation of the role of enzymatic and nonenzymatic antioxidant systems in the radiation resistance of Deinococcus. Can J Microbiol 56:195–201

    Article  CAS  Google Scholar 

  • Shima J et al (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker’s yeast. Appl Environ Microbiol 65:2841–2846

    CAS  Google Scholar 

  • Shin DY, Matsumoto K, Iida H, Uno I, Ishikawa T (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7:244–250

    CAS  Google Scholar 

  • Siderius M, Van Wuytswinkel O, Reijenga KA, Kelders M, Mager WH (2000) The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature. Mol Microbiol 36:1381–1390

    Article  CAS  Google Scholar 

  • Sikorski J, Brambilla E, Kroppenstedt RM, Tindall BJ (2008) The temperature-adaptive fatty acid content in Bacillus simplex strains from ‘Evolution Canyon’, Israel. Microbiology 154:2416–2426

    Article  CAS  Google Scholar 

  • Singaravelan N, Grishkan I, Beharav A, Wakamatsu K, Ito S, Nevo E (2008) Adaptive melanin response of the soil fungus Aspergillus niger to u.v. radiation stress at “Evolution Canyon”, Mount Carmel, Israel. PLoS One 3:e2993

  • Singer MA, Lindquist S (1998a) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  Google Scholar 

  • Singer MA, Lindquist S (1998b) Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol 16:460–468

    Article  CAS  Google Scholar 

  • Singh RK, Krishna M (2006) DNA damage induced nucleotide excision repair in Saccharomyces cerevisiae. Mol Cell Biochem. doi:10.1007/s11010-006-9173-z

  • Steels EL, Learmonth RP, Watson K (1994) Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology 140:569–576

    Article  CAS  Google Scholar 

  • Streit F, Delettre J, Corrieu G, Beal C (2008) Acid adaptation of Lactobacillus delbrueckii subsp bulgaricus induces physiological responses at membrane and cytosolic levels that improves cryotolerance. J Appl Microbiol 105:1071–1080

    Article  CAS  Google Scholar 

  • Strøm AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    Article  Google Scholar 

  • Sugawara M, Cytryn EJ, Sadowsky MJ (2010) Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation. Appl Environ Microbiol 76:1071–1081

    Article  CAS  Google Scholar 

  • Swan TM, Watson K (1999) Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Can J Microbiol 45:472–479

    Article  CAS  Google Scholar 

  • Tamai KT, Liu X, Silar P, Sosinowski T, Thiele DJ (1994) Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 14:8155–8165

    CAS  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918

    Article  CAS  Google Scholar 

  • Toone WM, Jones N (1998) Stress-activated signalling pathways in yeast. Genes Cells 3:485–498

    Article  CAS  Google Scholar 

  • Trautinger F, Kindås-Mügge I, Knobler RM, Hönigsmann H (1996) Stress proteins in the cellular response to ultraviolet radiation. J Photochem Photobiol B: Biol 35:141–148

    Article  CAS  Google Scholar 

  • Treger JM, Magee TR, McEntee K (1998) Functional analysis of the stress response element and its role in the multistress response of Saccharomyces cerevisiae. Biochem Biophys Res Commun 243:13–19

    Article  CAS  Google Scholar 

  • Trollmo C, Andre L, Blomberg A, Adler L (1988) Physiological overlap between osmotolerance and thermotolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 56:321–326

    Article  CAS  Google Scholar 

  • Trott A, Morano KA (2003) The yeast response to heat shock. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Berlin, pp 71–119

    Chapter  Google Scholar 

  • Tzvetkov M, Klopprogge C, Zelder O, Liebl W (2003) Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiology 149:1659–1673

    Article  CAS  Google Scholar 

  • Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    Google Scholar 

  • Van Laere AJ (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210

    Google Scholar 

  • VanBogelen RA, Acton MA, Neidhardt FC (1987) Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev 1:525–531

    Article  CAS  Google Scholar 

  • Varela JC, van Beekvelt C, Planta RJ, Mager WH (1992) Osmostress-induced changes in yeast gene expression. Mol Microbiol 6:2183–2190

    Article  CAS  Google Scholar 

  • Venturi V (2003) Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol Microbiol 49:1–9

    Article  CAS  Google Scholar 

  • Verma NC, Singh RK (2001) Stress-inducible DNA repair in Saccharomyces cerevisiae. J Environ Pathol Toxicol and Oncol 20:1–7

    CAS  Google Scholar 

  • Wang L, Renault G, Garreau H, Jacquet M (2004) Stress induces depletion of Cdc25p and decreases the cAMP producing capability in Saccharomyces cerevisiae. Microbiology 150:3383–3391

    Article  CAS  Google Scholar 

  • Wang G, Alamuri P, Maier RJ (2006) The diverse antioxidant systems of Helicobacter pylori. Mol Microbiol 61:847–860

    Article  CAS  Google Scholar 

  • Weber H, Polen T, Heuveling J, Wendisch VF, Hengge R (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603

    Article  CAS  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1:109–115

    Article  CAS  Google Scholar 

  • White-Ziegler CA, Um S, Perez NM, Berns AL, Malhowski AJ, Young S (2008) Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148–166

    Article  CAS  Google Scholar 

  • Wilson JW et al (2002) Low-shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol 68:5408–5416

    Article  CAS  Google Scholar 

  • Winkler K, Kienle I, Burgert M, Wagner J-C, Holzer H (1991) Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett 291:269–272

    Article  CAS  Google Scholar 

  • Wu S, Shen R, Zhang X, Wang Q (2010) Molecular cloning and characterization of maltooligosyltrehalose synthase gene from Nostoc flagelliforme. J Microbiol Biotechnol 20:579–586

    CAS  Google Scholar 

  • Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol 35:397–406

    Article  Google Scholar 

  • Zhdanova NN, Zakharchenko VA, Vember VV, Nakonechnaya LT (2000) Fungi from Chernobyl: micobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycol Res 104:1421–1426

    Article  Google Scholar 

Download references

Acknowledgments

I am very grateful to my PhD advisor Dr. Donald W. Roberts and co-advisor Dr. Anne J. Anderson at Utah State University for their support, fondness, and help. This work was supported by the National Council for Scientific and Technological Development (CNPq) of Brazil for a PhD fellowship GDE 200382/02-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drauzio E. N. Rangel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangel, D.E.N. Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes. World J Microbiol Biotechnol 27, 1281–1296 (2011). https://doi.org/10.1007/s11274-010-0584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0584-3

Keywords

Navigation