Skip to main content
Log in

Fate and Ecological Risk of Phthalate Esters in Microplastics of Wastewater in the Wastewater Treatment Plant

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Chemicals known as phthalate acid esters, which are present in many products we use every day, were identified as priority pollutants that have negative effects on living things. A source of phthalate acid esters discharged into receiving waterways and the environment is wastewater treatment plant effluent. This study measured the content of phthalate acid esters in wastewater’s liquid portion and microplastics throughout the wastewater treatment process, as well as evaluating the ecological risk of phthalate acid esters. The highest removal efficiency in wastewater, as well as microplastics of wastewater during the treatment process, was found for diethyl phthalate with 82.35% and 94% efficiency, respectively. The obtained data suggest that di-n-butyl phthalate and benzyl butyl phthalate in wastewater effluent have a high environmental risk at all three trophic levels (fish, invertebrates, and algae/cyanobacteria); the risk quotient value of di-n-butyl phthalate for algae/cyanobacteria was over 1000. Consequently, the health of fish and other aquatic life, as well as the local population, may be threatened by wastewater effluent discharged into receiving river (the Karun River).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Akdemir, T., & Gedik, K. (2023). Microplastic emission trends in Turkish primary and secondary municipal wastewater treatment plant effluents discharged into the Sea of Marmara and Black Sea. Environmental Research, 231, 116188.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Bai, B., Bai, F., Li, X., Nie, Q., Jia, X., & Wu, H. (2022). The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste. Environmental Technology and Innovation, 28, 102944.

    Article  CAS  Google Scholar 

  • Bai, B., Chen, J., Bai, F., Nie, Q., & Jia, X. (2024). Corrosion effect of acid/alkali on cementitious red mud-fly ash materials containing heavy metal residues. Environmental Technology and Innovation, 33, 103485.

    Article  CAS  Google Scholar 

  • Céspedes, R., Lacorte, S., Raldúa, D., Ginebreda, A., Barceló, D., & Piña, B. (2005). Distribution of endocrine disruptors in the Llobregat River basin (Catalonia, NE Spain). Chemosphere, 61, 1710–1719.

    Article  ADS  PubMed  Google Scholar 

  • Chi, J., Li, Y., & Gao, J. (2019). Interaction between three marine microalgae and two phthalate acid esters. Ecotoxicology and Environmental Safety, 170, 407–411.

    Article  PubMed  CAS  Google Scholar 

  • Clara, M., Windhofer, G., Hartl, W., Braun, K., Simon, M., Gans, O., Scheffknecht, C., & Chovanec, A. (2010). Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere, 78(9), 1078–1084.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Dargnat, C., Teil, M.-J., Chevreuil, M., & Blanchard, M. (2009). Phthalate removal throughout wastewater treatment plant: case study of Marne Aval station (France). Science of the Total Environment, 407(4), 1235–1244.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Dong, C.-D., Wang, M.-H., Chen, C.-F., Shih, Y.-J., Chang, K.-L., Lee, S.-H., Lin, Y.-L., Wu, C.-H., & Chen, C.-W. (2020). Detecting phthalate esters in sludge particulates from wastewater treatment plants. Journal of Environmental Science and Health, Part A, 55(10), 1233–1240.

    Article  CAS  Google Scholar 

  • Dueñas-Moreno, J., Vázquez-Tapia, I., Mora, A., Cervantes-Avilés, P., Mahlknecht, J., Capparelli, M. V., Kumar, M., & Wang, C. (2024). Occurrence, ecological and health risk assessment of phthalates in a polluted urban river used for agricultural land irrigation in central Mexico. Environmental Research, 240, 117454.

    Article  ADS  PubMed  Google Scholar 

  • Gani, K. M., & Kazmi, A. A. (2020). Ecotoxicological risk evaluation and regulatory compliance of endocrine disruptor phthalates in a sustainable wastewater treatment scheme. Environmental Science and Pollution Research, 27, 7785–7794.

    Article  PubMed  CAS  Google Scholar 

  • Gao, D., Li, Z., Wen, Z., & Ren, N. (2014). Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China. Chemosphere, 95, 24–32.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Gao, D.-W., & Wen, Z.-D. (2016). Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Science of the Total Environment, 541, 986–1001.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Gonzalez-Marino, I., Ares, L., Montes, R., Rodil, R., Cela, R., Lopez-Garcia, E., Postigo, C., de Alda, M. L., Pocurull, E., & Marcé, R. M. (2021). Assessing population exposure to phthalate plasticizers in thirteen Spanish cities through the analysis of wastewater. Journal of Hazardous Materials, 401, 123272.

    Article  PubMed  CAS  Google Scholar 

  • Hernando, M. D., Mezcua, M., Fernández-Alba, A. R., & Barceló, D. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), 334–342.

    Article  PubMed  CAS  Google Scholar 

  • Kanaujiya, D. K., Chhantyal, A. K., Pugazhenthi, G., & Pakshirajan, K. (2023). A novel hybrid system for continuous biodegradation and toxicity removal of low molecular weight phthalates. Journal of Environmental Chemical Engineering, 11, 109983.

    Article  CAS  Google Scholar 

  • Kerienė, I., & Maruška, A. (2022). A review on the presence and removal of phthalates from wastewater. Urban Water Journal, 19(8), 769–781.

    Article  Google Scholar 

  • Kim, M. K., Kim, K. B., Yoon, S., Kim, H. S., & Lee, B.-M. (2020). Risk assessment of unintentional phthalates contaminants in cosmetics. Regulatory Toxicology and Pharmacology, 115, 104687.

    Article  PubMed  CAS  Google Scholar 

  • Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment. Science of the Total Environment, 466, 421–438.

    Article  ADS  PubMed  Google Scholar 

  • Kotowska, U., Kapelewska, J., & Sawczuk, R. (2020). Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environmental Pollution, 267, 115643.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, M., Singh, N. K., Varma, S. K., & Singh, R. (2023). Biodegradation and removal of phthalate esters from wastewater. In Current Developments in Biotechnology and Bioengineering (pp. 103–126).

    Chapter  Google Scholar 

  • Lange, R., Vogel, N., Schmidt, P., Gerofke, A., Luijten, M., Bil, W., Santonen, T., Schoeters, G., Gilles, L., & Sakhi, A. K. (2022). Cumulative risk assessment of five phthalates in European children and adolescents. International Journal of Hygiene and Environmental Health, 246, 114052.

    Article  PubMed  CAS  Google Scholar 

  • Lawal, R.I., Adewoye, S.O., Adenigba, V.O., & Ajao, A.A., (2023). Quantitative Evaluation of Phthalate Esters in Three Tributaries of Asa River, Ilorin, Nigeria. International Journal of Environment and Pollution Research, 11(1), 1-12.

  • Liu, F. F., Liu, G. Z., Zhu, Z. L., Wang, S. C., & Zhao, F. F. (2019). Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere, 214, 688–694.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Liu, S.-S., You, W.-D., Chen, C.-E., Wang, X.-Y., Yang, B., & Ying, G.-G. (2023). Occurrence, fate and ecological risks of 90 typical emerging contaminants in full-scale textile wastewater treatment plants from a large industrial park in Guangxi, Southwest China. Journal of Hazardous Materials, 449, 131048.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Chen, Z.L., Shen, J.M., (2013). Occurrence and removal characteristics of phthalate esters from typical water sources in Northeast China. Journal of Analytical Methods Chemistry, 1–8.

  • Mukhopadhyay, M., & Chakraborty, P. (2021). Plasticizers and bisphenol A: Emerging organic pollutants along the lower stretch of River Ganga, north-east coast of the Bay of Bengal. Environmental Pollution, 276, 116697.

    Article  PubMed  CAS  Google Scholar 

  • Nantaba, F., Palm, W.-U., Wasswa, J., Bouwman, H., Kylin, H., & Kuemmerer, K. (2021). Temporal dynamics and ecotoxicological risk assessment of personal care products, phthalate ester plasticizers, and organophosphorus flame retardants in water from Lake Victoria, Uganda. Chemosphere, 262, 127716.

    Article  PubMed  CAS  Google Scholar 

  • Nas, B., Ateş, H., Dolu, T., Yel, E., Argun, M., Koyuncu, S., Kara, M., & Dinç, S. (2022). Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. Chemosphere, 295, 133864.

    Article  PubMed  CAS  Google Scholar 

  • Niari, M. H., Jaafarzadeh, N., Dobaradaran, S., Niri, M. V., & Dargahi, A. (2023). Release of microplastics to the environment through wastewater treatment plants: Study on four types of wastewater treatment processes. Water, Air, & Soil Pollution, 234(9), 589.

    Article  ADS  CAS  Google Scholar 

  • Nouraki, A., Alavi, M., Golabi, M., & Albaji, M. (2021). Prediction of water quality parameters using machine learning models: A case study of the Karun River, Iran. Environmental Science and Pollution Research, 28(40), 57060–57072.

    Article  PubMed  CAS  Google Scholar 

  • Ofogh, A. R. E., Dorche, E. E., Birk, S., & Bruder, A. (2023). Effect of seasonal variability on the development and application of a novel Multimetric Index based on benthic macroinvertebrate communities–A case study from streams in the Karun river basin (Iran). Ecological Indicators, 146, 109843.

    Article  Google Scholar 

  • Prieto, A., Schrader, S., & Moeder, M. (2010). Determination of organic priority pollutants and emerging compounds in wastewater and snow samples using multiresidue protocols on the basis of microextraction by packed sorbents coupled to large volume injection gas chromatography–mass spectrometry analysis. Journal of Chromatography A, 1217(38), 6002–6011.

    Article  PubMed  CAS  Google Scholar 

  • Sahoo, T. P., & Kumar, M. A. (2023). Remediation of phthalate acid esters from contaminated environment—Insights on the bioremedial approaches and future perspectives. Heliyon, 9(4), e14945.

  • Salaudeen, T., Okoh, O., Agunbiade, F., & Okoh, A. (2018). Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa. Chemosphere, 203, 336–344.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Selvaraj, K.K., Sundaramoorthy, G., Ravichandran, P.K., Girijan, G.K., Sampath, S., Ramaswamy, B.R., (2015). Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations. Environmental Geochemistry and Health, 37(1), 83–96.

  • Sibali, L.L., Okonkwo, J.O., McCrindle, R.I., (2013). Determination of selected phthalate esters compounds in water and sediments by capillary gas chromatography and flame ionization detector. Journal of Environmental Science and Health, Part A: Tox Hazardous Substance Environmental Engineering, 48(11), 1365–1377.

  • Sicińska, P., Mokra, K., Wozniak, K., Michałowicz, J., & Bukowska, B. (2021). Genotoxic risk assessment and mechanism of DNA damage induced by phthalates and their metabolites in human peripheral blood mononuclear cells. Scientific Reports, 11(1), 1–13.

    Article  ADS  Google Scholar 

  • Singh, R., Sinha, A., & Ken, D. S. (2023). Occurrence of phthalates in the environment, their toxicity, and treatment technologies. In Persistent Pollutants in Water and Advanced Treatment Technology (pp. 97–131).

    Chapter  Google Scholar 

  • Sun, S., Shen, J., Li, B., Geng, J., Ma, L., Qi, H., Zhang, A., & Zhao, Z. (2021). The spatiotemporal distribution and potential risk assessment of 19 phthalate acid esters in wastewater treatment plants in China. Environmental Science and Pollution Research, 28, 67280–67291.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, T., Yaguchi, K., Suzuki, S., Suga, T., (2001). Monitoring of phthalic acid monoesters in river water by solidphase extraction and GC–MS determination. Environmental Science and Technology, 35, 3757–3763.

  • Takdastan, A., Niari, M. H., Babaei, A., Dobaradaran, S., Jorfi, S., & Ahmadi, M. (2021). Occurrence and distribution of microplastic particles and the concentration of di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. Journal of Environmental Management, 280, 111851.

    Article  PubMed  CAS  Google Scholar 

  • Teil, M. J., Blanchard, M., Dargnat, C., Larcher-Tiphagne, K., & Chevreuil, M. (2007). Occurrence of phthalate diesters in rivers of the Paris district (France). Hydrological Processes, 21, 2515–2525.

    Article  ADS  CAS  Google Scholar 

  • Thomsen, L. B. S., Anastasakis, K., & Biller, P. (2024). Hydrothermal liquefaction potential of wastewater treatment sludges: Effect of wastewater treatment plant and sludge nature on products distribution. Fuel., 355, 129525.

    Article  Google Scholar 

  • Tran, H. T., Lin, C., Bui, X.-T., Nguyen, M. K., Cao, N. D. T., Mukhtar, H., Hoang, H. G., Varjani, S., Ngo, H. H., & Nghiem, L. D. (2022). Phthalates in the environment: Characteristics, fate and transport, and advanced wastewater treatment technologies. Bioresource Technology, 344, 126249.

    Article  Google Scholar 

  • Tsai, Y.-A., Tsai, M.-S., Hou, J.-W., Lin, C.-L., Chen, C.-Y., Chang, C.-H., Liao, K.-W., Wang, S.-L., Chen, B.-H., & Wu, M.-T. (2018). Evidence of high di (2-ethylhexyl) phthalate (DEHP) exposure due to tainted food intake in Taiwanese pregnant women and the health effects on birth outcomes. Science of the Total Environment, 618, 635–644.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wang, C., Wang, J., Gao, W., Ning, X., Xu, S., Wang, X., Chu, J., Ma, S., Bai, Z., & Yue, G. (2023). The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. Science of the Total Environment, 873, 162201.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wang, J., Tian, Y., Wei, J., Lyu, C., Yu, H., & Song, Y. (2023). Impacts of dibutyl phthalate on bacterial community composition and carbon and nitrogen metabolic pathways in a municipal wastewater treatment system. Environmental Research, 223, 115378.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Wang, M.-H., Chen, C.-F., Albarico, F. P. J. B., Chen, C.-W., & Dong, C.-D. (2022). Occurrence and distribution of phthalate esters and microplastics in wastewater treatment plants in Taiwan and their toxicological risks. Chemosphere, 307, 135857.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Hu, E., Yang, C., & Li, M. (2023). Occurrence, distribution and risk assessment of phthalate esters in 51 urban wastewater treatment plants in Shaanxi Province, China. Journal of Environmental Chemical Engineering, 11(3), 110075.

    Article  CAS  Google Scholar 

  • Wang, G., Lu, G., Zhao, J., Yin, P., Zhao, L. (2016). Evaluation of toxicity and estrogenicity of the landfillconcentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools. Environmental Science and Pollution Research, 23, 16015-16024.

  • Weizhen, Z., Xiaowei, Z., Peng, G., Ning, W., Zini, L., Jian, H., & Zheng, Z. (2020). Distribution and risk assessment of phthalates in water and sediment of the Pearl River Delta. Environmental Science and Pollution Research, 27, 12550–12565.

    Article  PubMed  Google Scholar 

  • Wu, J., Ma, T., Zhou, Z., Yu, N., He, Z., Li, B., Shi, Y., & Ma, D. (2019). Occurrence and fate of phthalate esters in wastewater treatment plants in Qingdao, China. Human and Ecological Risk Assessment: An International Journal, 25(6), 1547–1563.

    Article  CAS  Google Scholar 

  • Yuan, S., Liu, C., Liao, C., Chang, B. (2002). Occurrence and microbial degradation of phthalate esters in Taiwan river sediments. Chemosphere, 49, 1295-1299.

  • Zeng, F., Cui, K., Li, X., Fu, J., Sheng, G. (2004). Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process Biochemistry, 39, 1125-1129.

  • Zhang, L., Liu, J., Liu, H., Wan, G., & Zhang, S. (2015). The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China. Ecotoxicology, 24, 967–984.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Q., Jia, J., Zhang, K., Zhang, H., & Liao, C. (2019). Spatial distribution and mass loading of phthalate esters in wastewater treatment plants in China: An assessment of human exposure. Science of the Total Environment, 656, 862–869.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Ziajahromi, S., Neale, P. A., Rintoul, L., & Leusch, F. D. (2017). Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Ziajahromi, S., Neale, P. A., Silveira, I. T., Chua, A., & Leusch, F. D. (2021). An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere, 263, 128294.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This article was financially supported by Ahvaz Jundishapur University of Medical Sciences, Iran (Grant no ETRC-9904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Hazrati Niari.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niari, M.H., Takdastan, A., Babaei, A. et al. Fate and Ecological Risk of Phthalate Esters in Microplastics of Wastewater in the Wastewater Treatment Plant. Water Air Soil Pollut 235, 106 (2024). https://doi.org/10.1007/s11270-024-06915-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-06915-x

Keywords

Navigation