Skip to main content
Log in

Biological and Photocatalytic Degradation of Congo Red, a Diazo Sulfonated Substituted Dye: a Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The environment has undergone significant change because of technological advancement. Industries are releasing pollutants directly into the environment. Water pollution is a growing issue for humanity. Methods for managing wastewater generated by biological and industrial wastes are being developed. Textile industries are risking the health of living beings by contaminating water with dyes. Azo dyes are the major constituent of wastewater from textile industries. This review article focuses on the photodegradation of Congo red, the most prominent Azo dye. For Congo red degradation, both biological (via microorganisms) and chemical (via nanoparticles) methods are being investigated. The biological method primarily employs bacterial and fungal species. Bacterial species such as Bacillus sp., Pseudomonas sp., and Staphylococcus lentus sp. efficiently degrade Congo red dye. The presence of functional groups on the cell wall of fungi, such as phosphates and hydroxyl, promotes efficient dye degradation. The use of nanoparticles for photodegradation of dyes is preferable because it does not result in polycyclic compounds after degradation. Many bimetallic catalysts, such as ZnO and TiO2, have shown promising photocatalytic properties due to their large band gap. The use of nanoparticles that can be easily separated after photodegradation is preferred. As Gd3+ doped cobalt ferrite nanoparticles have higher removed capabilities than undoped cobalt ferrite nanoparticles, doping improves the degrading capability of nanocatalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  • Abe, F. R., Mendonça, J. N., Moraes, L. A., De Oliveira, G. A., Gravato, C., Soares, A. M., & De Oliveira, D. P. (2017). Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life. Chemosphere, 178, 282–290.

    CAS  Google Scholar 

  • Adam, R. E., Pozina, G., Willander, M., & Nur, O. (2018). Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. In: Photonics and Nanostructures-Fundamentals, Applications, 32, 11–18.

    Google Scholar 

  • Ahmad, A., Mohd-Setapar, S. H., Chuong, C. S., Khatoon, A., Wani, W. A., Kumar, R., & Rafatullah, M. (2015). Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Advances, 5(39), 30801–30818.

    CAS  Google Scholar 

  • Aithal, P. S., & Aithal, S. (2022). Opportunities and challenges for green and eco-friendly nanotechnology in twenty-first century. Sustainable nanotechnology: Strategies, products, and applications. 31–50

  • Ajoudanian, N., & Nezamzadeh-Ejhieh, A. (2015). Enhanced photocatalytic activity of nickel oxide supported on clinoptilolite nanoparticles for the photodegradation of aqueous cephalexin. Materials Science in Semiconductor Processing, 36, 162–169.

    CAS  Google Scholar 

  • Alderete, B. L., Da Silva, J., Godoi, R., Da Silva, F. R., Taffarel, S. R., Da Silva, L. P., Garcia, A. L. H., Júnior, H. M., De Amorim, H. L. N., & Picada, J. N. (2021). Evaluation of Toxicity and Mutagenicity of a Synthetic Effluent Containing Azo Dye after Advanced Oxidation Process Treatment. Chemosphere, 263, 128291.

    CAS  Google Scholar 

  • Ali, H. (2010). Biodegradation of synthetic dyes—A review. Water, Air, & Soil Pollution, 213(1), 251–273.

    CAS  Google Scholar 

  • Alsamhary, K., Al-Enazi, N. M., Alhomaidi, E., & Alwakeel, S. (2022). Spirulina platensis mediated biosynthesis of Cuo Nps and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. Environmental Research, 207, 112172.

  • Arıca, M. Y., & Bayramoğlu, G. (2007). Biosorption of reactive red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journal of Hazardous Materials, 1492, 499–507.

    Google Scholar 

  • Arkhipov, V., Heremans, P., Emelianova, E., & Baessler, H. (2005). Effect of doping on the density-of-states distribution and carrier hopping in disordered organic semiconductors. Physical Review B, 71(4), 045214.

    Google Scholar 

  • Arkhipov, V. I., Heremans, P., Emelianova, E. V., & Baessler, H. (2005). Effect of Doping on the Density-of-States Distribution and Carrier Hopping in Disordered Organic Semiconductors. Physical Review B, 71(4), 045214.

    Google Scholar 

  • Aslam, M., Fazal, D. B., Ahmad, F., Fazal, A. B., Abdullah, A. Z., Ahmed, M., Qamar, M., & Rafatullah, M. (2022). Photocatalytic degradation of recalcitrant pollutants of greywater. Catalysts, 12(5), 557.

    CAS  Google Scholar 

  • Asses, N., Ayed, L., Hkiri, N., & Hamdi, M. (2018). Congo red decolorization and detoxification by aspergillus niger: removal mechanisms and dye degradation pathway. BioMed Research International, 2018

  • Ayati, A., Ahmadpour, A., Bamoharram, F. F., Heravi, M. M., & Rashidi, H. (2011). Photocatalytic Synthesis of Gold Nanoparticles Using Preyssler Acid and Their Photocatalytic Activity. Chinese Journal of Catalysis, 32(6–8), 978–982.

    CAS  Google Scholar 

  • Babu, S. S., Mohandass, C., Vijayaraj, A., & Dhale, M. A. (2015). Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26)–A microcosm approach. Ecotoxicology and Environmental Safety, 114, 52–60.

    Google Scholar 

  • Babu, S. S., Mohandass, C., Vijayaraj, A., & Dhale, M. A. (2015). Detoxification and color removal of Congo red by a novel Dietzia sp. (DTS26)–A microcosm approach. Ecotoxicology and Environmental Safety, 114, 52–60.

    Google Scholar 

  • Bal, G., & Thakur, A. (2022). Distinct approaches of removal of dyes from wastewater: A review. Materials Today: Proceedings, 50, 1575–1579.

  • Balapure, K., Bhatt, N., & Madamwar, D. (2015). Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresource Technology, 175, 1–7.

    CAS  Google Scholar 

  • Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M., & Sharma, Y. C. (2019). Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye Orange G from Aqueous Solutions. Arabian Journal of Chemistry, 12(8), 5339–5354.

    CAS  Google Scholar 

  • Bansal, P., & Sud, D. (2011). Photodegradation of commercial dye, Procion Blue HERD from real textile wastewater using nanocatalysts. Desalination, 267(2–3), 244–249.

    CAS  Google Scholar 

  • Bansal, P., Chaudhary, G. R., & Mehta, S. K. (2015). Comparative study of catalytic activity of ZrO2 nanoparticles for sonocatalytic and photocatalytic degradation of cationic and anionic dyes. Chemical Engineering Journal, 280, 475–485.

    CAS  Google Scholar 

  • Barbosa, L. V., Marçal, L., Nassar, E. J., Calefi, P. S., Vicente, M. A., Trujillano, R., Rives, V., Gil, A., Korili, S. A., & Ciuffi, K. J. (2015). Kaolinite-Titanium Oxide Nanocomposites Prepared via Sol-Gel as Heterogeneous Photocatalysts for Dyes Degradation. Catalysis Today, 246, 133–142.

    CAS  Google Scholar 

  • Bedekar, P. A., Saratale, R. G., Saratale, G. D., & Govindwar, S. P. (2014). Development of low cost upflow column bioreactor for degradation and detoxification of Blue HERD and textile effluent by Lysinibacillus sp RGS Immobilized on Loofa. International Biodeterioration and Biodegradation, 96, 112–120.

    Google Scholar 

  • Bento, R. M., Almeida, M. R., Bharmoria, P., Freire, M. G., & Tavares, A. P. (2020). Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Separation and Purification Technology, 235, 116191.

    CAS  Google Scholar 

  • Bhat, S. A., Zafar, F., Mondal, A. H., Kareem, A., Mirza, A. U., Khan, S., Mohammad, A., Haq, Q. M., & Nishat, N. (2020). Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. Journal of the Iranian Chemical Society, 17(1), 215–227.

    CAS  Google Scholar 

  • Bhat, S. A., Zafar, F., Mondal, A. H., Kareem, A., Mirza, A. U., Khan, S., Mohammad, A., Haq, Q. M. R., & Nishat, N. (2020). Photocatalytic degradation of carcinogenic Congo red dye in aqueous solution, antioxidant activity and bactericidal effect of NiO nanoparticles. Journal of the Iranian Chemical Society, 17(1), 215–227.

    CAS  Google Scholar 

  • Bhattacharjee, A., Ahmaruzzaman, M., Devi, T. B., & Nath, J. (2016). Photodegradation of methyl violet 6B and methylene blue using tin-oxide nanoparticles (synthesized via a green route). Journal of Photochemistry and Photobiology A: Chemistry, 325, 116–124.

    CAS  Google Scholar 

  • Bianco Prevot, A., Baiocchi, C., Brussino, M. C., Pramauro, E., Savarino, P., Augugliaro, V., Marci, G., & Palmisano, L. (2001). Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. Environmental Science & Technology, 35(5), 971–976.

    Google Scholar 

  • Blais, K. M. J. (2006). TM Satinder Kaur Brar b. Mausam Verma. Imprint, 150(419), 1501

  • Blaszczyk, R. L. (2019). Colors in Fashion. Textile History, Taylor & Francis, 50(1), 113–115.

  • Brüschweiler, B. J., & Merlot, C. (2017). Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet. Regulatory Toxicology and Pharmacology, 88, 214–226.

    Google Scholar 

  • Carliell, C., Barclay, S., & Buckley, C. J. (1996). Treatment of exhausted reactive dyebath effluent using anaerobic digestion: laboratory and full-scale trials. Water SA, 22(3), 225–233.

    CAS  Google Scholar 

  • Carolin, C. F., Kumar, P. S., & Joshiba, G. J. (2021). Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technologies and Environmental Policy, 23(1), 173–181.

    CAS  Google Scholar 

  • Chaieb, K., Hagar, M., & Radwan, N. R. E. (2016). Biodegradation and decolorization of azo dyes by adherent Staphylococcus lentus strain. Applied Biological Chemistry, 59(3), 405–413.

    CAS  Google Scholar 

  • Chakraborty, S., Basak, B., Dutta, S., Bhunia, B., & Dey, A. (2013). Decolorization and biodegradation of Congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology, 147, 662–666.

    CAS  Google Scholar 

  • Chantarasiri, A., & Boontanom, P. (2017). Decolorization of synthetic dyes by ligninolytic Lysinibacillus sphaericus JD1103 isolated from Thai wetland ecosystems. Aquaculture, Aquarium, Conservation & Legislation, 10(4), 814–819.

    Google Scholar 

  • Chao, C., Guan, H., Zhang, J., Liu, Y., Zhao, Y., & Zhang, B. (2018). Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. Water Science and Technology, 77(3), 809–818.

    CAS  Google Scholar 

  • Chauhan, A., Verma, R., Kumari, S., Sharma, A., Shandilya, P., Li, X., Batoo, K. M., Imran, A., Kulshrestha, S., & Kumar, R. (2020). Photocatalytic dye degradation and antimicrobial activities of Pure and Ag-doped ZnO using Cannabis sativa leaf extract. Scientific Reports, 10(1), 1–16.

    Google Scholar 

  • Chen, C., Wen, Z., Wang, Y., Zhang, W., & Zhang, T. (2022). Multi-objective optimization of technology solutions in municipal solid waste treatment system coupled with pollutants cross-media metabolism issues. Science of the Total Environment, 807, 150664.

    CAS  Google Scholar 

  • Ch-Th, T., Manisekaran, R., Santoyo-Salazar, J., Schoefs, B., Velumani, S., Castaneda, H., & Jantrania, A. (2021). Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. Journal of Photochemistry and Photobiology a: Chemistry, 418, 113374.

    CAS  Google Scholar 

  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155.

    CAS  Google Scholar 

  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155.

    CAS  Google Scholar 

  • Cristóvão, R. O., Tavares, A. P., Ferreira, L. A., Loureiro, J. M., Boaventura, R. A., & Macedo, E. A. (2009). Modeling the discoloration of a mixture of reactive textile dyes by commercial laccase. Bioresource Technology, 100(3), 1094–1099.

    Google Scholar 

  • Cruz-Rizo, A., Gutiérrez-Granados, S., Salazar, R., Peralta-Hernández, J. M. J. S., & Technology, P. (2017). Application of electro-fenton/bdd process for treating tannery wastewaters with industrial dyes. Separation and Purification Technology, 172, 296–302.

    CAS  Google Scholar 

  • Daniel, A. J., Enzo, E. R., Juliana, M. S., Stefanie, B. C-G., Analia, A., Claudia, S. B., & Marta, A. P. (2022). The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. Journal of Environmental Chemical Engineering, 10(2), 107141.

  • Darwish, M., Mohammadi, A., & Assi, N. (2016). Microwave-assisted polyol synthesis and characterization of pvp-capped cds nanoparticles for the photocatalytic degradation of tartrazine. Materials Research Bulletin, 74, 387–396.

    CAS  Google Scholar 

  • Das, A., Bhattacharya, S., Panchanan, G., Navya, B., & Nambiar, P. (2016). Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk. Journal of Genetic Engineering and Biotechnology, 14(2), 281–288.

    Google Scholar 

  • de Beluci, N. C. L., Mateus, G. A. P., Miyashiro, C. S., Homem, N. C., Gomes, R. G., Fagundes-Klen, M. R., Bergamasco, R., & Vieira, A. M. S. (2019). Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Science of The Total Environment, 664, 222–229.

    CAS  Google Scholar 

  • Debnath, P., & Mondal, N. K. (2020). Effective removal of Congo red dye from aqueous solution using biosynthesized zinc oxide nanoparticles. Environmental Nanotechnology, Monitoring and Management, 14, 100320.

    Google Scholar 

  • Domínguez-Cuevas, P., González-Pastor, J.-E., Marqués, S., Ramos, J.-L., & De Lorenzo, V. (2006). Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. Journal of Biological Chemistry, 281(17), 11981–11991.

    Google Scholar 

  • Dontsova, T. A., Kutuzova, A. S., Bila, K. O., Kyrii, S. O., Kosogina, I. V., & Nechyporuk, D. O. (2020). Enhanced photocatalytic activity of TiO2/SnO2 binary nanocomposites. Journal of Nanomaterials, 2020

  • Duan, L., Zhang, Y., Wang, B., Deng, S., Huang, J., Wang, Y., & Yu, G. (2018). Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China. Environmental Pollution, 239, 473–482.

    CAS  Google Scholar 

  • Dubé, E., Shareck, F., Hurtubise, Y., Beauregard, M., & Daneault, C. (2008). Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. Journal of Industrial Microbiology and Biotechnology, 35(10), 1123–1129.

    Google Scholar 

  • Ekambaram, S. P., Perumal, S. S., Rajendran, D., Samivel, D., Khan, M. N. (2018). Toxicity and biodegradation testing: Springer 241–267

  • El Hassani, K., Kalnina, D., Turks, M., Beakou, B. H., & Anouar, A. (2019). Enhanced degradation of an azo dye by catalytic ozonation over ni-containing layered double hydroxide nanocatalyst. Separation and Purification Technology, 210, 764–774.

    Google Scholar 

  • Elango, G., & Roopan, S. M. (2016). Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology, 155, 34–38.

    CAS  Google Scholar 

  • Elango, G., Kumaran, S. M., Kumar, S. S., Muthuraja, S., & Roopan, S. M. (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 176–180.

    CAS  Google Scholar 

  • El-Salamony, R. A., Amdeha, E., Badawy, N. A., Ghoneim, S. A., & Al-Sabagh, A. M. (2018). Visible light sensitive activated carbon-metal oxide (TiO2, WO3, NiO, and SnO) nano-catalysts for photo-degradation of methylene blue: A comparative study. Toxicological & Environmental Chemistry, 100(2), 143–156.

    CAS  Google Scholar 

  • Eskandarinezhad, S., Khosravi, R., Amarzadeh, M., Mondal, P., & Correa Magalhaes Filho, F. J. (2021). Application of different Nanocatalysts in industrial effluent treatment: A review. Journal of Composites and Compounds, 3(6), 43–56.

    Google Scholar 

  • Fairuzi, A., Bonnia, N., Akhir, R., Abrani, M., Akil, H. (2018). Degradation of methylene blue using silver nanoparticles synthesized from Imperata cylindrica aqueous extract. IOP Publishing, IOP Conference Series: Earth and Environmental Science, 012018

  • Fernández, C., Larrechi, M. S., & Callao, M. P. (2010). An analytical overview of processes for removing organic dyes from wastewater effluents. TrAC Trends in Analytical Chemistry, 29(10), 1202–1211.

    Google Scholar 

  • Feuzer-Matos, A. J., Testolin, R. C., Cotelle, S., Sanches-Simões, E., Pimentel-Almeida, W., Niero, G., Walz, G. C., Ariente-Neto, R., Somensi, C. A., & Radetski, C. M. (2021). Degradation of recalcitrant textile azo-dyes by fenton-based process followed by biochar polishing. Journal of Environmental Science and Health, Part A, 56(9), 1019–1029.

    CAS  Google Scholar 

  • Gadd, G. M., Laurence, O. S., Briscoe, P. A., & Trevors, J. T. (1989). Silver accumulation in Pseudomonas stutzeri AG259. Biology of Metals, 2(3), 168–173.

    CAS  Google Scholar 

  • Gao, Y., Wu, Y., Xiao, J., & Lu, D. (2018). An experimental research on the machinability of a high temperature titanium alloy BTi-6431S in turning process. Manufacturing Review, 5, 12.

    CAS  Google Scholar 

  • Garcia, B. B., Lourinho, G., Romano, P., & Brito, P. (2020). Photocatalytic degradation of swine wastewater on aqueous TiO2 suspensions: Optimization and modeling via Box-Behnken design. Heliyon, 6(1), e03293.

    Google Scholar 

  • Gautam, A., Kshirsagar, A., Biswas, R., Banerjee, S., & Khanna, P. K. (2016). Photodegradation of organic dyes based on anatase and rutile TiO 2 nanoparticles. RSC Advances, 6(4), 2746–2759.

    CAS  Google Scholar 

  • Giri, S., Das, N., & Pradhan, G. C. (2011). Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1–3), 43–49.

    CAS  Google Scholar 

  • Girish, K. (2019). Chapter-3 Microbial decolourization of textile dyes and biodegradation of textile industry effluent. Advances In, 37

  • Gopinath, K. P., Sahib, H. A. M., Muthukumar, K., & Velan, M. (2009). Improved biodegradation of Congored by using Bacillus sp. Bioresource technology, 100(2), 670–675.

    CAS  Google Scholar 

  • Gunjakar, J. L., Kim, T. W., Kim, H. N., Kim, I. Y., & Hwang, S. J. (2011). Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: Highly active visible light photocatalysts with improved chemical stability. Journal of the American Chemical Society, 133(38), 14998–15007.

    CAS  Google Scholar 

  • Gupta, S., Giordano, C., Gradzielski, M., & Mehta, S. K. (2013). Microwave-assisted synthesis of small ru nanoparticles and their role in degradation of congo red. Journal of Colloid and Interface Science, 411, 173–181.

    CAS  Google Scholar 

  • Gürses, A., Açıkyıldız, M., Güneş, K., & Gürses, M. S. (2016). Dyes and Pigments. Gürses, A., Açıkyıldız, M., Güneş, K. and Gürses, M.S. (eds). Cham: Springer International Publishing, 13–29.

  • Hairom, N. H. H., Mohammad, A. W., Ng, L. Y., & Kadhum, A. (2015). Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane. Desalination and Water Treatment, 54(4–5), 944–955.

    CAS  Google Scholar 

  • Hamoud, H. I., Finqueneisel, G., & Azambre, B. (2017). Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system. Journal of Environmental Management, 195, 195–207.

    CAS  Google Scholar 

  • Hazarika, A., Yadav, M., Yadav, D. K., & Yadav, H. S. (2022). An overview of the role of nanoparticles in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 102399

  • He, Q.-B., Hu, Z., & Ge, M. (2021). Research progress on photo-degradation of antibiotics in water by BiOX (X= Cl, Br, I) composite photocatalytic materials. Chinese Journal of Applied Chemistry, 38(7), 754.

    Google Scholar 

  • Hoque, E., & Fritscher, J. (2019). Multimetal bioremediation and biomining by a combination of new aquatic strains of Mucor hiemalis. Scientific Reports, 9(1), 1–16.

    Google Scholar 

  • Horitsu, H., Takada, M., Idaka, E., Tomoyeda, M., & Ogawa, T. (1977). Degradation of p-Aminoazobenzene byBacillus subtilis. European Journal of Applied Microbiology and Biotechnology, 4(3), 217–224.

    CAS  Google Scholar 

  • Iark, D., Dos Reis, Buzzo A J., Garcia, J. A. A., Côrrea, V. G., Helm, C. V., Corrêa, R. C. G., Peralta, R. A., Moreira, R. D. F. P. M., Bracht, A., & Peralta, R. M. (2019). Enzymatic degradation and detoxification of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource Technology, 289, 121655.

    CAS  Google Scholar 

  • Ikram, M., Hassan, J., Raza, A., Haider, A., Naz, S., Ul-Hamid, A., Haider, J., Shahzadi, I., Qamar, U., & Ali, S. (2020). Photocatalytic and bactericidal properties and molecular docking analysis of TiO 2 nanoparticles conjugated with Zr for environmental remediation. RSC Advances, 10(50), 30007–30024.

    CAS  Google Scholar 

  • Jalandoni-Buan, A. C., Decena-Soliven, A. L. A., Cao, E. P., Barraquio, V. L., & Barraquio, W. L. (2015). Microbial Degradation of Synthetic Dyes in Wastewaters. Singh, S.N. (ed). Cham: Springer International Publishing, 135–148.

  • Jamee, R., & Siddique, R. (2019). Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. European Journal of Microbiology and Immunology, 9(4), 114–118.

    CAS  Google Scholar 

  • Jayakumar, G., Irudayaraj, A. A., & Raj, A. D. (2017). Photocatalytic degradation of methylene blue by nickel oxide nanoparticles. Materials Today: Proceedings, 4(11), 11690–11695.

    Google Scholar 

  • Jiang, W., Pelaez, M., Dionysiou, D. D., Entezari, M. H., Tsoutsou, D., & O’shea, K. (2013). Chromium (VI) removal by maghemite nanoparticles. Chemical Engineering Journal, 222, 527–533.

    CAS  Google Scholar 

  • Jorfi, S., Pourfadakari, S., & Kakavandi, B. (2018). A new approach in sono-photocatalytic degradation of recalcitrant textile wastewater using MgO@ Zeolite nanostructure under UVA irradiation. Chemical Engineering Journal, 343, 95–107.

    CAS  Google Scholar 

  • Kalam, A., Al-Sehemi, A. G., Assiri, M., Du, G., Ahmad, T., Ahmad, I., & Pannipara, M. (2018). Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results in Physics, 8, 1046–1053.

    Google Scholar 

  • Kanakaraju, D., Glass, B. D., & Oelgemöller, M. (2018). Advanced oxidation process-mediated removal of pharmaceuticals from water: a review. Journal of Environmental Management, 219, 189–207.

    CAS  Google Scholar 

  • Kapdan, I. K., & Kargi, F. (2002). Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor. Enzyme and Microbial Technology, 30(2), 195–199.

    CAS  Google Scholar 

  • Kapoor, R. T., Danish, M., Singh, R. S., Rafatullah, M., & Hps, A. K. (2021). Exploiting microbial biomass in treating azo dyes contaminated wastewater: mechanism of degradation and factors affecting microbial efficiency. Journal of Water Process Engineering, 43, 102255.

    Google Scholar 

  • Katwal, R., Kaur, H., Sharma, G., Naushad, M., Pathania, D., & Chemistry, E. (2015). Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. Journal of Industrial and Engineering Chemistry, 31, 173–184.

    CAS  Google Scholar 

  • Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: Recent advances and future potential. Environment International, 35(1), 127–141.

    CAS  Google Scholar 

  • Kaushik, P., & Malik, A. J. E. I. (2009). Fungal Dye Decolourization: Recent Advances and Future Potential. Environment International, 35(1), 127–141.

    CAS  Google Scholar 

  • Khairnar, S. D., Patil, M. R., & Shrivastava, V. S. (2018). Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of Congo red and methylene blue. Iranian Journal of Catalysis, 8(2), 143–150.

    CAS  Google Scholar 

  • Khan, R., Adnan, A., Pervaiz, M., Raza, M., Sagir, M., & Naz, M. J. R. J. O. P. C. B. (2016). Biodegradation of h acid by bacillus subtilis and rp-hplc method development for percent degradation estimation Russian. Journal of Physical Chemistry B, 10(3), 517–523.

    CAS  Google Scholar 

  • Khan, A., Naeem, A., & Mahmood, T. (2020). Kinetic studies of methyl orange and Congo red adsorption and photocatalytic degradation onto PVP-functionalized ZnO. Kinetics and Catalysis, 61(5), 730–739.

    CAS  Google Scholar 

  • Khan, I., Saeed, K., Ali, N., Khan, I., Zhang, B., & Sadiq, M. (2020). Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. Journal of Environmental Chemical Engineering, 8(5), 104364.

    CAS  Google Scholar 

  • Khan, S., Naushad, M., Al-Gheethi, A., & Iqbal, J. (2021). Engineered nanoparticles for removal of pollutants from wastewater: Current status and future prospects of nanotechnology for remediation strategies. Journal of Environmental Chemical Engineering, 9(5), 106160.

    CAS  Google Scholar 

  • Khan, Z. U. H., Khan, A., Shah, N. S., Din, I. U., Salam, M. A., Iqbal, J., Muhammad, N., Imran, M., Ali, M., & Sayed, M. (2021). Photocatalytic and biomedical investigation of green synthesized NiONPs: Toxicities and degradation pathways of Congo red dye. Surfaces and Interfaces, 23, 100944.

    CAS  Google Scholar 

  • Khan, R. R. M., Saeed, S., & Adnan, A. (2018). Toxicity and Biodegradation Testing. Bidoia, E.D. and Montagnolli, R.N. (eds). New York, NY: Springer New York, 269–280.

  • Khaniabadi, Y. O., Mohammadi, M. J., Shegerd, M., Sadeghi, S., Saeedi, S., & Basiri, H. (2017). Removal of congo red dye from aqueous solutions by a low-cost adsorbent: activated carbon prepared from aloe vera leaves shell. Environmental Health Engineering and Management Journal, 4(1), 29–35.

    CAS  Google Scholar 

  • Khehra, M. S., Saini, H. S., Sharma, D. K., Chadha, B. S., & Chimni, S. S. (2005). Decolorization of various azo dyes by bacterial consortium. Dyes and Pigments, 67(1), 55–61.

    CAS  Google Scholar 

  • Khurana, R., Uversky, V. N., Nielsen, L., & Fink, A. L. (2001). Is Congo red an amyloid-specific dye? Journal of Biological Chemistry, 276(25), 22715–22721.

    CAS  Google Scholar 

  • Kolya, H., Maiti, P., Pandey, A., & Tripathy, T. (2015). Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. Journal of Analytical Science and Technology, 6(1), 33.

    Google Scholar 

  • Konieczkowska, J., Wojtowicz, M., Sobolewska, A., Noga, J., Jarczyk-Jedryka, A., Kozanecka-Szmigiel, A., & Schab-Balcerzak, E. (2015). Thermal, optical and photoinduced properties of a series of homo and co-polyimides with two kinds of covalently bonded azo-dyes and their supramolecular counterparts. Optical Materials, 48, 139–149.

    CAS  Google Scholar 

  • Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49(1), 1–14.

    CAS  Google Scholar 

  • Korenak, J., Ploder, J., Trček, J., Hélix-Nielsen, C., & Petrinic, I. (2018). Decolourisations and biodegradations of model azo dye solutions using a sequence batch reactor, followed by ultrafiltration. International Journal of Environmental Science and Technology, 15(3), 483–492.

    CAS  Google Scholar 

  • Kozma, G., Rónavári, A., Kónya, Z., & Kukovecz, A. (2016). Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustainable Chemistry & Engineering, 4(1), 291–297.

    CAS  Google Scholar 

  • Kraft, A., Stadelmann, M., & Blaschke, M. (2003). Anodic oxidation with doped diamond electrodes: a new advanced oxidation process. Journal of Hazardous Materials, 103(3), 247–261.

    CAS  Google Scholar 

  • Krishnakumar, B., & Swaminathan, M. (2011). Influence of operational parameters on photocatalytic degradation of a genotoxic azo dye Acid Violet 7 in aqueous ZnO suspensions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81(1), 739–744.

    CAS  Google Scholar 

  • Kumar, M., Mehta, A., Mishra, A., Singh, J., Rawat, M., & Basu, S. (2018). Biosynthesis of tin oxide nanoparticles using psidium guajava leave extract for photocatalytic dye degradation under sunlight. Materials Letters, 215, 121–124.

    CAS  Google Scholar 

  • Kuppusamy, S., Sethurajan, M., Kadarkarai, M., & Aruliah, R. (2017). Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri MN1 and Acinetobacter baumannii MN3. Journal of Environmental Chemical Engineering, 5(1), 716–724.

    CAS  Google Scholar 

  • Lachheb, H., Puzenat, E., Houas, A., Ksibi, M., Elaloui, E., Guillard, C., & Herrmann, J.-M. (2002). Photocatalytic degradation of various types of dyes (alizarin S, Crocein Orange G, methyl red, Congo red, methylene blue) in water by UV-irradiated titania. Applied Catalysis B: Environmental, 39(1), 75–90.

    CAS  Google Scholar 

  • Lade, H., Govindwar, S., & Paul, D. (2015). Mineralization and detoxification of the carcinogenic azo dye congo red and real textile effluent by a polyurethane foam immobilized microbial consortium in an upflow column bioreactor. International Journal of Environmental Research and Public Health, 12(6), 6894–6918.

    CAS  Google Scholar 

  • Lai, C.-Y., Wu, C.-H., Meng, C.-T., & Lin, C. W. (2017). Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Applied Energy, 188, 392–398.

    CAS  Google Scholar 

  • Lamba, R., Umar, A., Mehta, S., & Kansal, S. K. (2015). ZnO doped SnO2 nanoparticles heterojunction photo-catalyst for environmental remediation. Journal of Alloys and Compounds, 653, 327–333.

    CAS  Google Scholar 

  • Li, S., Huang, J., Mao, J., Zhang, L., He, C., Chen, G., Parkin, I. P., & Lai, Y. (2019). In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent. Nanoscale Advances, 1(1), 168–176.

    CAS  Google Scholar 

  • Li, X., Li, W., Wang, M., & Liao, Z. (2021). Magnetic nanoparticles for cancer theranostics: Advances and prospects. Journal of Controlled Release, 335, 437–448.

    CAS  Google Scholar 

  • Liu, H., Hao, H., Xing, J., Dong, J., Zhang, Z., Zheng, Z., & Zhao, K. (2016). Enhanced Photocatalytic Capability of Zinc Ferrite Nanotube Arrays Decorated with Gold Nanoparticles for Visible Light-Driven Photodegradation of Rhodamine b. Journal of Materials Science, 51(12), 5872–5879.

    CAS  Google Scholar 

  • Lizama, C., Freer, J., Baeza, J., & Mansilla, H. D. (2002). Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions. Catalysis Today, 76(2–4), 235–246.

    CAS  Google Scholar 

  • Maddhinni, V. L., Vurimindi, H. B., & Yerramilli, A. (2013). Degradation of azo dye with horse radish peroxidase (hrp). Journal of the Indian Institute of Science, 86(5), 507.

    Google Scholar 

  • Mahapatra, N. (2016). Introduction to textile dyes. Textile Dyes (pp. 17-30). WPI Publishing.

  • Mahdiani, M., Soofivand, F., Ansari, F., & Salavati-Niasari, M. (2018). Grafting of CuFe12O19 nanoparticles on CNT and graphene: Eco-friendly synthesis, characterization and photocatalytic activity. Journal of Cleaner Production, 176, 1185–1197.

    CAS  Google Scholar 

  • Mahmoodi, N. M. (2016). Photocatalytic degradation of textile dyes using ozonation and magnetic nickel ferrite nanoparticle. Progress in Color, Colorants and Coatings, 9, 161–172.

    Google Scholar 

  • Mahmoud, M. S., Mostafa, M. K., Mohamed, S. A., Sobhy, N. A., & Nasr, M. (2017). Bioremediation of red azo dye from aqueous solutions by aspergillus niger strain isolated from textile wastewater. Journal of Environmental Chemical Engineering, 5(1), 547–554.

    CAS  Google Scholar 

  • Manivel, A., Lee, G.-J., Chen, C.-Y., Chen, J.-H., Ma, S.-H., Horng, T.-L., & Wu, J. J. (2015). Synthesis of MoO3 nanoparticles for azo dye degradation by catalytic ozonation. Materials Research Bulletin, 62, 184–191.

    CAS  Google Scholar 

  • Maryami, M., Nasrollahzadeh, M., Mehdipour, E., & Sajadi, S. M. J. I. J. O. H. E. (2016). Preparation of the ag/rgo nanocomposite by use of abutilon hirtum leaf extract: a recoverable catalyst for the reduction of organic dyes in aqueous medium at room temperature. International Journal of Hydrogen Energy, 41(46), 21236–21245.

    CAS  Google Scholar 

  • Masunga, N., Mmelesi, O. K., Kefeni, K. K., & Mamba, B. B. (2019). Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment. Journal of Environmental Chemical Engineering, 7(3), 103179.

    CAS  Google Scholar 

  • Meephon, S., Rungrotmongkol, T., Puttamat, S., Praserthdam, S., & Pavarajarn, V. (2019). Heterogeneous photocatalytic degradation of diuron on zinc oxide: Influence of surface-dependent adsorption on kinetics, degradation pathway, and toxicity of intermediates. Journal of Environmental Sciences, 84, 97–111.

    CAS  Google Scholar 

  • Mehr, E. S., Sorbiun, M., Ramazani, A., & Fardood, S. (2018). Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using Ferulago angulata (Schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science: Materials in Electronics, 29(2), 1333–1340.

    Google Scholar 

  • Meng, D., Liu, X., Xie, Y., Du, Y., Yang, Y., & Xiao, C. (2019). Antibacterial Activity of Visible Light-Activated TiO2 Thin Films with Low Level of Fe Doping. Advances in Materials Science and Engineering, 2019, 1–8.

  • Merah, C. (2020). Electrosynthesis of silver oxide deposited onto hot spring mud with enhanced degradation of Congo red. Malaysian Journal of Analytical Sciences, 24(2), 266–275.

    Google Scholar 

  • Mo, Y.-Y., Tang, Y.-K., Wang, S.-Y., Lin, J.-M., Zhang, H.-B., & Luo, D.-Y. (2015). Green synthesis of silver nanoparticles using eucalyptus leaf extract. Materials Letters, 144, 165–167.

    CAS  Google Scholar 

  • Mohamed, A., Karima, S., & Nadia, O. (2022). The use of medicinal plants against cancer: An ethnobotanical study in the Beni Mellal-Khenifra Region in Morocco. European Journal of Integrative Medicine, 52, 102137.

    Google Scholar 

  • Mohapatra, R. K., Behera, S. S., Patra, J. K., Thatoi, H., & Parhi, P. K. (2020). New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms. Yadav, M.K. and Singh, B.P. (eds): Elsevier, 267–281.

  • Molinari, R., Lavorato, C., & Argurio, P. (2020). Visible-light photocatalysts and their perspectives for building photocatalytic membrane reactors for various liquid phase chemical conversions. Catalysts, 10(11), 1334.

    CAS  Google Scholar 

  • Moon, S. A., Salunke, B. K., Saha, P., Deshmukh, A. R., & Kim, B. S. (2018). Comparison of dye degradation potential of biosynthesized copper oxide, manganese dioxide, and silver nanoparticles using Kalopanax pictus plant extract. Korean Journal of Chemical Engineering, 35(3), 702–708.

    CAS  Google Scholar 

  • Moosvi, S., Keharia, H., & Madamwar, D. (2005). Decolourization of textile dye Reactive Violet 5 by a newly isolated bacterial consortium RVM 11.1. World Journal of Microbiology and Biotechnology, 21(5), 667–672.

    CAS  Google Scholar 

  • Movahedi, M., Mahjoub, A., & Janitabar-Darzi, S. (2009). Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO2. Journal of the Iranian Chemical Society, 6(3), 570–577.

    CAS  Google Scholar 

  • Movahedi, M., Mahjoub, A., & Janitabar-Darzi, S. (2009). Photodegradation of Congo red in aqueous solution on ZnO as an alternative catalyst to TiO 2. Journal of the Iranian Chemical Society, 6(3), 570–577.

    CAS  Google Scholar 

  • M-Ridha, M. J., Hussein, S. I., Alismaeel, Z. T., Atiya, M. A., & Aziz, G. M. (2020). Biodegradation of reactive dyes by some bacteria using response surface methodology as an optimization technique. Alexandria Engineering Journal, 59(5), 3551–3563.

    Google Scholar 

  • Musa, M. A., & Idrus, S. (2021). Physical and biological treatment technologies of slaughterhouse wastewater: a review. Sustainability, 13(9), 4656.

    CAS  Google Scholar 

  • Nagajyothi, P., Deyarayapalli, K., Tettey, C., Vattikuti, S. P., & Shim, J. (2019). Eco-friendly green synthesis: catalytic activity of nickel hydroxide nanoparticles. Materials Research Express, 6(5), 055036.

    CAS  Google Scholar 

  • Nagajyothi, P., Prabhakar Vattikuti, S., Devarayapalli, K., Yoo, K., Shim, J., & Sreekanth, T. V. M. (2020). Green synthesis: Photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Critical Reviews in Environmental Science and Technology, 50(24), 2617–2723.

    CAS  Google Scholar 

  • Namratha, N., & Monica, P. V. (2013). Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian Journal of Pharmacy and Technolog, 3(4), 170–174.

    Google Scholar 

  • Nandhini, N. T., Rajeshkumar, S., & Mythili, S. (2019). The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatalysis and Agricultural Biotechnology, 19, 101138.

  • Natarajan, T. S., Thomas, M., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2011). Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chemical Engineering Journal, 169(1–3), 126–134.

    CAS  Google Scholar 

  • Neoh, C. H., Lam, C. Y., Lim, C. K., Yahya, A., Bay, H. H., Ibrahim, Z., & Noor, Z. Z. (2015). Biodecolorization of recalcitrant dye as the sole sourceof nutrition using Curvularia clavata NZ2 and decolorization ability of its crude enzymes. Environmental Science and Pollution Research, 22(15), 11669–11678.

    CAS  Google Scholar 

  • Nezamzadeh-Ejhieh, A., & Bahrami, M. (2015). Investigation of the photocatalytic activity of supported ZnO–TiO2 on clinoptilolite nano-particles towards photodegradation of wastewater-contained phenol. Desalination and Water Treatment, 55(4), 1096–1104.

    CAS  Google Scholar 

  • Nguyen, D. T. C., Le, H. T., Nguyen, T. T., Nguyen, T. T. T., Bach, L. G., Nguyen, T. D., & Van Tran, T. (2021). Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. Journal of Hazardous Materials, 420, 126586.

    CAS  Google Scholar 

  • Niculescu, A-G., Chircov, C., & Grumezescu, A. M. (2022). Magnetite nanoparticles: Synthesis methods – A comparative review. Methods, 199, 16–27.

  • Nigam, P., Banat, I. M., Singh, D., & Marchant, R. (1996). Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochemistry, 31(5), 435–442.

    CAS  Google Scholar 

  • Noman, E., Talip, B. A., Al-Gheethi, A., Mohamed, R., & Nagao, H. (2020). Decolourisation of dyes in greywater by mycoremediation and mycosorption process of fungi from peatland; primary study. Materials Today: Proceedings, 31, 23–30.

  • Oliveira, D. P., Carneiro, P. A., Sakagami, M. K., Zanoni, M. V. B., & Umbuzeiro, G. A. (2007). Chemical characterization of a dye processing plant effluent—identification of the mutagenic components. Mutation Research/genetic Toxicology and Environmental Mutagenesis, 626(1–2), 135–142.

    CAS  Google Scholar 

  • Olivo-Alanis, D., Garcia-Reyes, R. B., Alvarez, L. H., & Garcia-Gonzalez, A. (2018). Mechanism of anaerobic bio-reduction of azo dye assisted with lawsone-immobilized activated carbon. Journal of Hazardous Materials, 347, 423–430.

    CAS  Google Scholar 

  • Oros-Ruiz, S., Pedraza-Avella, J., Guzmán, C., Quintana, M., Moctezuma, E., Del Angel, G., Gómez, R., & Pérez, E. (2011). Effect of gold particle size and deposition method on the photodegradation of 4-chlorophenol by Au/TiO2. Topics in Catalysis, 54(8–9), 519–526.

    CAS  Google Scholar 

  • Pandey, A., Singh, P., & Iyengar, L. (2007). Bacterial decolorization and degradation of azo dyes. International Biodeterioration & Biodegradation, 59(2), 73–84.

    CAS  Google Scholar 

  • Parascandola, J. (1981). The theoretical basis of Paul Ehrlich’s chemotherapy. Journal of the History of Medicine and Allied Sciences, 36(1), 19–43.

    CAS  Google Scholar 

  • Parshetti, G., Kalme, S., Gomare, S., & Govindwar, S. P. (2007). Biodegradation of reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresource Technology, 98(18), 3638–3642.

    CAS  Google Scholar 

  • Parveen, K., Banse, V., & Ledwani, L. (2016). Green synthesis of nanoparticles: Their advantages and disadvantages: AIP Publishing LLC, 020048 https://doi.org/10.1063/1.4945168.

  • Patil, S., Deshmukh, S., More, K., Shevale, V., Mullani, S., Dhodamani, A., & Delekar, S. D. (2019). Sulfated TiO2/WO3 nanocomposite: An efficient photocatalyst for degradation of Congo red and methyl red dyes under visible light irradiation. Materials Chemistry and Physics, 225, 247–255.

    CAS  Google Scholar 

  • Pattnaik, S. P., Behera, A., Martha, S., Acharya, R., & Parida, K. (2018). Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. Journal of Nanoparticle Research, 20(1), 1–15.

    CAS  Google Scholar 

  • Pattnaik, S. P., Behera, A., Martha, S., Acharya, R., & Parida, K. (2018). Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles. Journal of Nanoparticle Research, 20(1), 10.

    Google Scholar 

  • Pearce C, Lloyd J, Guthrie J J D, Pigments 2003). The removal of colour from textile wastewater using whole bacterial cells: a review. 58(3): 179–196

  • Puchtler, H., Sweat, F., & Levine, M. (1962). On the binding of Congo red by amyloid. Journal of Histochemistry & Cytochemistry, 10(3), 355–364.

    CAS  Google Scholar 

  • Pundalik, E., Salagare, A., & Tandon, G. (2019). Degradation of Azo Dyes Using Mycoremediation. International Journal of Pharmacy and Biological Sciences, 159–169.

  • Puvaneswari, N., Muthukrishnan, J., & Gunasekaran, P. (2006). Toxicity assessment and microbial degradation of azo dyes. CSIR, 44(08), 618–626.

  • Qin, P., Yang, Y., Zhang, X., Niu, J., Yang, H., Tian, S., Zhu, J., & Lu, M. (2018). Highly efficient, rapid, and simultaneous removal of cationic dyes from aqueous solution using monodispersed mesoporous silica nanoparticles as the adsorbent. Nanomaterials, 8(1), 4.

    Google Scholar 

  • Qu, R., Zhang, W., Liu, N., Zhang, Q., Liu, Y., Li, X., Wei, Y., & Feng, L. (2018). Antioil Ag3PO4 nanoparticle/polydopamine/Al2O3 sandwich structure for complex wastewater treatment: Dynamic catalysis under natural light. ACS Sustainable Chemistry & Engineering, 6(6), 8019–8028.

    CAS  Google Scholar 

  • Rafiq, A., Ikram, M., Ali, S., Niaz, F., Khan, M., Khan, Q., & Maqbool, M. (2021). Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. Journal of Industrial and Engineering Chemistry, 97, 111–128.

    CAS  Google Scholar 

  • Rahimnejad, M., Adhami, A., Darvari, S., Zirepour, A., & Oh, S.-E. (2015). Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering Journal, 54(3), 745–756.

    Google Scholar 

  • Rai, M. S., Bhat, P. R., Prajna, P., Jayadev, K., & Rao, P. V. (2014). Degradation of malachite green and congo red using aloe barabadensis mill extract. International Journal of Current Microbiology and Applied Sciences, 3(4), 330–340.

    Google Scholar 

  • Rajendran, R., Vignesh, S., Sasireka, A., Priya, P., Suganthi, S., Raj, V., Sundar, J. K., Srinivasan, M., Shkir, M., & Alfaify, S. (2021). Investigation on novel Cu2O modified g-C3N4/ZnO heterostructures for efficient photocatalytic dye degradation performance under visible-light exposure. Colloid and Interface Science Communications, 44, 100480.

    CAS  Google Scholar 

  • Rajendran, R., Vignesh, S., Sasireka, A., Priya, P., Suganthi, S., Raj, V., Sundar, J. K., Srinivasan, M., Shkir, M., & Alfaify, S. (2021). Investigation on novel Cu2O modified g-C3N4/ZnO heterostructures for efficient photocatalytic dye degradation performance under visible-light exposure. Colloid and Interface Science Communications, 44, 100480.

    CAS  Google Scholar 

  • Raliya, R., Avery, C., Chakrabarti, S., & Biswas, P. (2017). Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Applied Nanoscience, 7(5), 253–259.

    CAS  Google Scholar 

  • Ramaswamy, V., Jagtap, N., Vijayanand, S., Bhange, D., & Awati, P. S. (2008). Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods. Materials Research Bulletin, 43(5), 1145–1152.

    CAS  Google Scholar 

  • Rambabu, K., Banat, F., Pham, Q. M., Ho, S.-H., Ren, N.-Q., & Show, P. L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024.

    CAS  Google Scholar 

  • Ranga, P., Saharan, B. S., & Sharma, D. (2015). Bacterial degradation and decolorization of textile dyes by newly isolated Lysobacter sp. African Journal of Microbiology Research, 9(14), 979–987.

    CAS  Google Scholar 

  • Raval, N. P., Shah, P. U., & Shah, N. K. (2016). Adsorptive amputation of hazardous azo dye congo red from wastewater: a critical review. Environmental Science and Pollution Research, 23(15), 14810–14853.

    CAS  Google Scholar 

  • Remya, R., Julius, A., Suman, T., Mohanavel, V., Karthick, A., Pazhanimuthu, C., Samrot, & A. V., Muhibbullah, M. (2022). Role of Nanoparticles in Biodegradation and Their Importance in Environmental and Biomedical Applications. Journal of Nanomaterials, 2022.

  • Rodríguez Couto, S. (2009). Dye removal by immobilised fungi. Biotechnology Advances, 27(3), 227–235.

    Google Scholar 

  • Roushenas, P., Yusop, Z., Majidnia, Z., & Nasrollahpour, R. (2016). Photocatalytic degradation of spilled oil in sea water using maghemite nanoparticles. Desalination and Water Treatment, 57(13), 5837–5841.

    CAS  Google Scholar 

  • Sadollahkhani, A., Ibupoto, Z. H., Elhag, S., Nur, O., & Willander, M. (2014). Photocatalytic properties of different morphologies of cuo for the degradation of congo red organic dye. Ceramics International, 40(7), 11311–11317.

    CAS  Google Scholar 

  • Sahoo, C., Gupta, A. K., & Sasidharan Pillai, I. M. (2012). Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO2 and its application to the degradation of real textile wastewater. Journal of Environmental Science and Health, Part A, 47(10), 1428–1438.

    CAS  Google Scholar 

  • Saifuddin, N., Wong, C., & Yasumira, A. A. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-journal of Chemistry, 6(1), 61–70.

    CAS  Google Scholar 

  • Sajid, M., & Płotka-Wasylka, J. (2020). Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154, 104623.

    CAS  Google Scholar 

  • Santoso, I., Purnomo, W., Oktavianto, H., Sjamsuridzal, W., Handayani, W., & Sunardi. (2016). Isolation and characterization of potential bacteria with the ability to degrade Congo Red dye: AIP Publishing LLC, 020072.

  • Sarani, M., Joshaghani, A. B., Najafidoust, A., Asl, E. A., Hakki, H. K., Bananifard, H., & Sillanpaa, M. (2021). Sun-light driven photo degradation of organic dyes from wastewater on precipitation Ag2CrO4 over SiO2-aerogel and nano silica. Inorganic Chemistry Communications, 133, 108877.

    CAS  Google Scholar 

  • Saraswathi, V. S., Kamarudheen, N., Bhaskararao, K., & Santhakumar, K. (2017). Phytoremediation of dyes using lagerstroemia speciosa mediated silver nanoparticles and its biofilm activity against clinical strains pseudomonas aeruginosa. Journal of Photochemistry and Photobiology B: Biology, 168, 107–116.

    Google Scholar 

  • Saravanan, A., Kumar, P. S., Karishma, S., Vo, D.-V.N., Jeevanantham, S., Yaashikaa, P., & George, C. S. (2021). A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 264, 128580.

    CAS  Google Scholar 

  • Sarkar, S., Banerjee, A., Halder, U., Biswas, R., & Bandopadhyay, R. (2017). Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conservation Science and Engineering, 2(4), 121–131.

    Google Scholar 

  • Schaefer III, H. F., Thomas, J. R., Yamaguchi, Y., DeLeeuw, B. J., & Vacek, G. (1995). The chemical applicability of standard methods in ab initio molecular quantum mechanics TiO. Modern Electronic Structure Theory (In 2 Parts)-Part 1, 2, 1. 2: 1

  • Sehati, S., & Entezari, M. H. (2016). Sono-intercalation of cds nanoparticles into the layers of titanate facilitates the sunlight degradation of congo red. Journal of Colloid and Interface Science, 462, 130–139.

    CAS  Google Scholar 

  • Selvaraj, V., Karthika, T. S., Mansiya, C., & Alagar, M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 1224, 129195.

    CAS  Google Scholar 

  • Sen, S. K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews, 30(3), 112–133.

    Google Scholar 

  • Sen, S. K., Raut, S., Bandyopadhyay, P., & Raut, S. (2016). Fungal decolouration and degradation of azo dyes: a review. Fungal Biology Reviews, 30(3), 112–133.

    Google Scholar 

  • Shabir, G., Saeed, A., Arshad, M., & Channar, P. A. (2017). Synthesis, Characterization and Applications of High Fastness Reactive Dyes on Cotton Fibers. Journal of the Chemical Society of Pakistan, 39(6).

  • Sharma, V. K. (2009). Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. Journal of Environmental Science and Health Part A, 44(14), 1485–1495.

    CAS  Google Scholar 

  • Shu, J., Wang, Z., Huang, Y., Huang, N., Ren, C., & Zhang, W. (2015). Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles: Kinetics, isotherms, thermodynamics and mechanism analysis. Journal of Alloys and Compounds, 633, 338–346.

    CAS  Google Scholar 

  • Simon, J. E., Decker, E. A., Ferruzzi, M. G., Giusti, M. M., Mejia, C. D., Goldschmidt, M., & Talcott, S. T. J. J. O. F. S. (2017). Establishing Standards on Colors from Natural Sources., 82(11), 2539–2553.

    CAS  Google Scholar 

  • Singh, P., & Borthakur, A. (2018). A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. Journal of Cleaner Production, 196, 1669–1680.

    CAS  Google Scholar 

  • Singh, G., & Dwivedi, S. K. (2020). Decolorization and degradation of direct blue-1 (azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environmental Technology & Innovation, 18, 100751.

    Google Scholar 

  • Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes–A review. International Biodeterioration & Biodegradation, 104, 21–31.

    CAS  Google Scholar 

  • Singh, P., Ojha, A., Borthakur, A., Singh, R., Lahiry, D., Tiwary, D., & Mishra, P. K. (2016). Emerging trends in photodegradation of petrochemical wastes: A review. Environmental Science and Pollution Research, 23(22), 22340–22364.

    CAS  Google Scholar 

  • Singh, A., Pal, D. B., Mohammad, A., Alhazmi, A., Haque, S., Yoon, T., Srivastava, N., & Gupta, V. K. (2022). Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresource Technology, 343, 126154.

    CAS  Google Scholar 

  • Singh, P., Iyengar, L., & Pandey, A. (2012). Bacterial decolorization and degradation of azo dyes. Microbial degradation of xenobiotics (pp. 101-133). Springer, Berlin, Heidelberg.

  • Skanda, S., Bharadwaj, P., Kar, S., Sai Muthukumar, V., & Vijayakumar, B. (2021). Bioremoval capacity of recalcitrant azo dye Congo red by soil fungus Aspergillus arcoverdensis SSSIHL-01. Bioremediation Journal, 1–12.

  • Sohrabi, M. R., Khavaran, A., Shariati, S., & Shariati, S. (2017). Removal of carmoisine edible dye by fenton and photo fenton processes using taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523–S3531.

    CAS  Google Scholar 

  • Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: A review. Process Biochemistry, 47(12), 1723–1748.

    Google Scholar 

  • Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: a review. Process Biochemistry, 47(12), 1723–1748.

    Google Scholar 

  • Sosa-Martínez, J. D., Balagurusamy, N., Montañez, J., Peralta, R. A., Moreira, R. D. F. P. M., Bracht, A., Peralta, R. M., & Morales-Oyervides, L. (2020). Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. Journal of Hazardous Materials, 400, 123254.

    Google Scholar 

  • Steingruber, E. (2000). Indigo and indigo colorants. Ullmann's Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a14_149.

  • Sudha, M., Saranya, A., Selvakumar, G., & Sivakumar, N. (2014). Microbial degradation of azo dyes: A review. International Journal of Current Microbiology and Applied Sciences, 3(2), 670–690.

    CAS  Google Scholar 

  • Sundararajan, M., Sailaja, V., Kennedy, L. J., & Vijaya, J. J. (2017). Photocatalytic degradation of rhodamine b under visible light using nanostructured zinc doped cobalt ferrite: kinetics and mechanism. Ceramics International, 43(1), 540–548.

    CAS  Google Scholar 

  • Swarnalatha, B., & Anjaneyulu, Y. (2004). Studies on the heterogeneous photocatalytic oxidation of 2, 6-dinitrophenol in aqueous TiO2 suspension. Journal of Molecular Catalysis A: Chemical, 223(1–2), 161–165.

    CAS  Google Scholar 

  • Tahir, U., Yasmin, A., & Khan, U. H. (2016). Phytoremediation: Potential flora for synthetic dyestuff metabolism. Journal of King Saud University-Science, 28(2), 119–130.

    Google Scholar 

  • Tama, J., Riyani, K., & Setyaningtyas, T. (2020). Effect of ultraviolet and visible lights on degradation of congo red dye using Fe2+/H2O2: Journal of Physics: Conference Series (Vol. 1494, No. 1, p. 012029). IOP Publishing.

  • Tapalad, T., Neramittagapong, A., Neramittagapong, S., & Boonmee, M. (2008). Degradation of congo red dye by ozonation. Chiang Mai Journal of Science, 35(1), 63–68.

    CAS  Google Scholar 

  • Telke, A. A., Kalyani, D. C., Dawkar, V. V., & Govindwar, S. P. (2009). Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye CI Reactive Orange 16. Journal of Hazardous Materials, 172(1), 298–309.

    CAS  Google Scholar 

  • Telke, A. A., Joshi, S. M., Jadhav, S. U., Tamboli, D. P., & Govindwar, S. P. (2010). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp SU-EBT. Biodegradation, 21(2), 283–296.

    CAS  Google Scholar 

  • Telke, A. A., Joshi, S. M., Jadhav, S. U., Tamboli, D. P., & Govindwar, S. P. (2010). Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation, 21(2), 283–296.

    CAS  Google Scholar 

  • Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., & Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B, 272, 115363.

    CAS  Google Scholar 

  • Terna, A. D., Elemike, E. E., Mbonu, J. I., Osafile, O. E., & Ezeani, R. O. (2021). The future of semiconductors nanoparticles: Synthesis, properties and applications. Materials Science and Engineering: B, 272, 115363.

    CAS  Google Scholar 

  • Tofa, T. S., Kunjali, K. L., Paul, S., & Dutta, J. (2019). Visible light photocatalytic degradation of microplastic residues with zinc oxide nanorods. Environmental Chemistry Letters, 17(3), 1341–1346.

    CAS  Google Scholar 

  • Travis, A. S. (1990). Perkin’s mauve: Ancestor of the organic chemical industry. Technology and Culture, 31(1), 51–82.

    Google Scholar 

  • Tröster, I., Fryda, M., Herrmann, D., Schäfer, L., Hänni, W., Perret, A., Blaschke, M., Kraft, A., & Stadelmann, M. (2002). Electrochemical advanced oxidation process for water treatment using DiaChem® electrodes. Diamond and Related Materials, 11(3–6), 640–645.

    Google Scholar 

  • Tsuboy, M., Angeli, J., Mantovani, M., Knasmüller, S., Umbuzeiro, G., & Ribeiro, L. R. (2007). Genotoxic, mutagenic and cytotoxic effects of the commercial dye CI Disperse Blue 291 in the human hepatic cell line HepG2. Toxicology in vitro, 21(8), 1650–1655.

    CAS  Google Scholar 

  • Uheida, A., Mejía, H. G., Abdel-Rehim, M., Hamd, W., & Dutta, J. (2021). Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. Journal of Hazardous Materials, 406, 124299.

    CAS  Google Scholar 

  • Ullah, I., Haider, A., Khalid, N., Ali, S., Ahmed, S., Khan, Y., Ahmed, N., & Zubair, M. (2018). Tuning the band gap of TiO2 by tungsten doping for efficient UV and visible photodegradation of Congo red dye. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 204, 150–157.

    CAS  Google Scholar 

  • Varshney, G., Kanel, S. R., Kempisty, D. M., Varshney, V., Agrawal, A., Sahle-Demessie, E., Varma, R. S., & Nadagouda, M. N. (2016). Nanoscale TiO2 films and their application in remediation of organic pollutants. Coordination Chemistry Reviews, 306, 43–64.

    CAS  Google Scholar 

  • Vasantharaj, S., Sathiyavimal, S., Senthilkumar, P., Lewisoscar, F., & Pugazhendhi, A. (2019). Biosynthesis of iron oxide nanoparticles using leaf extract of ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. Journal of Photochemistry and Photobiology B: Biology, 192, 74–82.

    CAS  Google Scholar 

  • Vidya, C., Manjunatha, C., Chandraprabha, M., Rajshekar, M., & Mal, A. R. (2017). Hazard free green synthesis of ZnO nano-photo-catalyst using Artocarpus heterophyllus leaf extract for the degradation of Congo red dye in water treatment applications. Journal of Environmental Chemical Engineering, 5(4), 3172–3180.

    CAS  Google Scholar 

  • Vidya, C., Manjunatha, C., Chandraprabha, M., Rajshekar, M., & Mal, A. R. (2017). Hazard free green synthesis of zno nano-photo-catalyst using artocarpus heterophyllus leaf extract for the degradation of congo red dye in water treatment applications. Journal of Environmental Chemical Engineering, 5(4), 3172–3180.

    CAS  Google Scholar 

  • Wang, N., Chu, Y., Zhao, Z., & Xu, X. (2017). Decolorization and degradation of congo red by a newly isolated white rot fungus ceriporia lacerata, from decayed mulberry branches. International Biodeterioration & Biodegradation, 117, 236–244.

    CAS  Google Scholar 

  • Weldegebrieal, G. K. (2020). Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorganic Chemistry Communications, 120, 108140.

    CAS  Google Scholar 

  • Wu, J., Gao, H., Yao, S., Chen, L., Gao, Y., & Zhang, H. (2015). Degradation of crystal violet by catalytic ozonation using fe/activated carbon catalyst. Separation and Purification Technology, 147, 179–185.

    CAS  Google Scholar 

  • Xiong, Z., Ma, J., Ng, W. J., Waite, T. D., & Zhao, X. S. (2011). Silver-modified mesoporous TiO2 photocatalyst for water purification. Water Research, 45(5), 2095–2103.

    CAS  Google Scholar 

  • Yang, W., Liu, X., Li, D., Fan, L., & Li, Y. (2015). Aggregation-induced preparation of ultrastable zinc sulfide colloidal nanospheres and their photocatalytic degradation of multiple organic dyes. Physical Chemistry Chemical Physics, 17(22), 14532–14541.

    CAS  Google Scholar 

  • Yarahmadi, H., Duy, S. V., Hachad, M., Dorner, S., Sauvé, S., & Prévost, M. (2018). Seasonal variations of steroid hormones released by wastewater treatment plants to river water and sediments: Distribution between particulate and dissolved phases. Science of the Total Environment, 635, 144–155.

    CAS  Google Scholar 

  • Yehia, R., & Rodriguez-Couto, S. (2017). Discoloration of the azo dye Congo red by manganese-dependent peroxidase from Pleurotus sajor caju. Applied Biochemistry and Microbiology, 53(2), 222–229.

    CAS  Google Scholar 

  • Yousefi, S. R., Ghanbari, D., Salavati-Niasari, M., & Hassanpour, M. (2016). Photo-degradation of organic dyes: Simple chemical synthesis of Ni (OH) 2 nanoparticles, Ni/Ni (OH) 2 and Ni/NiO magnetic nanocomposites. Journal of Materials Science: Materials in Electronics, 27(2), 1244–1253.

    CAS  Google Scholar 

  • Yusuf, M., Shabbir, M., & Mohammad, F. (2017). Natural colorants: Historical, processing and sustainable prospects. Natural Products and Bioprospecting, 7(1), 123–145.

    CAS  Google Scholar 

  • Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., & Sahu, J. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, 105, 105–128.

    CAS  Google Scholar 

  • Zabed, H., Sultana, S., Sahu, J. N., & Qi, X. (2018). An overview on the application of ligninolytic microorganisms and enzymes for pretreatment of lignocellulosic biomass. Recent advancements in biofuels and bioenergy utilization. 53–72.

  • Zaini, M. A. A., Cher, T. Y., Zakaria, M., Kamaruddin, M. J., Mohd Setapar, S. H., & Che Yunus, M. A. (2014). Palm oil mill effluent sludge ash as adsorbent for methylene blue dye removal. Desalination and Water Treatment, 52(19–21), 3654–3662.

    CAS  Google Scholar 

  • Zelmanov, G., & Semiat, R. (2015). The influence of competitive inorganic ions on phosphate removal from water by adsorption on iron (Fe+ 3) oxide/hydroxide nanoparticles-based agglomerates. Journal of Water Process Engineering, 5, 143–152.

    Google Scholar 

  • Zhang, F., Yin, X., & Zhang, W. (2016). Development of magnetic Sr5 (PO4) 3 (OH)/Fe3O4 nanorod for adsorption of Congo red from solution. Journal of Alloys and Compounds, 657, 809–817.

    CAS  Google Scholar 

  • Zhang, C., Li, Y., Shuai, D., Zhang, W., Niu, L., Wang, L., & Zhang, H. (2018). Visible-light-driven, water-surface-floating antimicrobials developed from graphitic carbon nitride and expanded perlite for water disinfection. Chemosphere, 208, 84–92.

    CAS  Google Scholar 

  • Zhang, C., Li, Y., Shuai, D., Shen, Y., & Wang, D. (2019). Progress and challenges in photocatalytic disinfection of waterborne viruses: A review to fill current knowledge gaps. Chemical Engineering Journal, 355, 399–415.

    CAS  Google Scholar 

  • Zhang, C., Zhang, M., Li, Y., & Shuai, D. (2019). Visible-light-driven photocatalytic disinfection of human adenovirus by a novel heterostructure of oxygen-doped graphitic carbon nitride and hydrothermal carbonation carbon. Applied Catalysis b: Environmental, 248, 11–21.

    CAS  Google Scholar 

  • Zhang, T., Lowry, G. V., Capiro, N. L., Chen, J., Chen, W., Chen, Y., Dionysiou, D. D., Elliott, D. W., Ghoshal, S., & Hofmann, T. (2019). In situ remediation of subsurface contamination: Opportunities and challenges for nanotechnology and advanced materials. Environmental Science: Nano, 6(5), 1283–1302.

    CAS  Google Scholar 

  • Zhao, J., Wu, T., Wu, K., Oikawa, K., Hidaka, H., & Serpone, N. (1998). Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: Evidence for the need of substrate adsorption on TiO2 particles. Environmental Science & Technology, 32(16), 2394–2400.

    CAS  Google Scholar 

  • Zhao, W., Wu, Z., Shi, H., & Wang, D. (2005). UV photodegradation of azo dye Diacryl Red X-GRL. Journal of Photochemistry and Photobiology A: Chemistry, 171(2), 97–106.

    CAS  Google Scholar 

  • Zhao, X., Wang, W., Zhang, Y., Wu, S., Li, F., & Liu, J. P. (2014). Synthesis and characterization of gadolinium doped cobalt ferrite nanoparticles with enhanced adsorption capability for congo red. Chemical Engineering Journal, 250, 164–174.

    CAS  Google Scholar 

  • Zhou, W., Zhang, W., & Cai, Y. (2021). Laccase immobilization for water purification: a comprehensive review. Chemical Engineering Journal, 403, 126272.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Rashad Mahmood Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.R.M., Qamar, H., Hameed, A. et al. Biological and Photocatalytic Degradation of Congo Red, a Diazo Sulfonated Substituted Dye: a Review. Water Air Soil Pollut 233, 468 (2022). https://doi.org/10.1007/s11270-022-05935-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-022-05935-9

Keywords

Navigation