Skip to main content
Log in

Nutrient Accumulation and Environmental Risks of Biosolids and Different Fertilizers on Horticultural Plants

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The application of biosolids is common in the agricultural industry; it improves the soil condition as well as the nitrogen (N), phosphate (P), and potassium (K) concentrations in it. However, it may cause environmental risks, such as contamination of soil profiles, water sources, and even the food chain because of the accumulation of heavy metals. The effects of different concentration proportions of biosolid (0%, 5%, 10%, 15%, and 20%) in soils on the growth performance, nutrient contents, and toxicity performance of three ornamental species: Ixora chinensis, Schefflera heptaphylla, and Hibiscus rosa-sinensis were studied. Other common organic soil amendments like biochar, chicken manure (CM), and wood waste compost (WWC) were used to compare with the feasibility of biosolid applications. The results showed that the growth performance of the three ornamental species was similar. Soil treated with a 10% concentration of biosolids performed the best in terms of total nutrients in the soil for the three species. For the total nutrients in the plants, biosolids were the best followed by CM, WWC, and biochar. The levels of heavy metals were examined and nutrient balance efficiency was calculated. Undetectable amount of heavy metals was measured in the three ornamental species, meaning it is safe to use biosolids as fertilizers. The 10% concentration of biosolids also performed the best in nutrient balance efficiency, followed by soil treated with 20% CM. The results indicated that the function of biosolids and CM was significant, and these could be a substitute for biochar and WWC use in soils. Biosolid-amended soil can be one of the methods to relieve the landfill loading problem in Hong Kong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data sets used during the current study are available from the corresponding author on reasonable request.

References

  • Abumere, V. I., Dada, O. A., Adebayo, G. A., Kutu, F. R., & Togun. A. I. (2019). Different rates of chicken manure and NPK 15–15–15 enhanced performance of sunflower (Helianthus annuus L.) on ferruginous soil. International Journal of Agronomy. 1–10.

  • Adekiya, A. O., Ejue, W. S., Olayanju, A., Dunsin, O., Aboyeji, C. M., Aremu, C., Adegbite, K., & Akinpelu, O. 2020. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Scientific Reports, 10(1).

  • Adeniyan, O. N., & Ojeniyi, S. O. (2005). Effect of poultry manure, NPK 15–15-15 and combination of their reduced levels on maize growth and soil chemical properties. Nigeria Journal of Soil Science, 15, 34–41.

    Google Scholar 

  • Albayrak, T., & Pekgöz, A. K. (2021). Heavy metal effects on bird morphometry: A case study on the house sparrow Passer domesticus. Chemosphere, 276, 130056.

    Article  CAS  Google Scholar 

  • Allen, S. E., Grimshaw, H. M., & Rowland, A. P. (1986). Chemical analysis. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology (pp. 285–344). Blackwell.

    Google Scholar 

  • Alvarenga, P., Mourinha, C., Farto, M., Palma, P., Sengo, J., Morais, M. C., & Cunha-Queda, C. (2016). Ecotoxicological assessment of the potential impact on soil porewater, surface and groundwater from the use of organic wastes as soil amendments. Ecotoxicology and Environmental Safety, 126, 102–110.

    Article  CAS  Google Scholar 

  • Belyaeva, O. H., & Haynes, R. J. (2009). Chemical, microbial and physical properties of manufactured soils produced by co-composting municipal green waste with coal fly ash. Bioresource Technology, 100, 5203–5209.

    Article  CAS  Google Scholar 

  • Boudjabi, S., Kribaa, M., & Chenchouni, H. (2017). Sewage sludge fertilization alleviates drought stress and improves physiological adaptation and yield performances in Durum Wheat (Triticum durum): A double-edged sword. Journal of King Saud University - Science.

  • Bourioug, M., Alaoui-Sossé, L., Laffray, X., Raouf, N., Benbrahim, M., Badot, P. M., & Alaoui-Sossé, B. (2014). Evaluation of sewage sludge effects on soil properties, plant growth, mineral nutrition state, and heavy metal distribution in European larch seedlings (Larix decidua). Arabian Journal for Science and Engineering, 39(7), 5325–5335.

    Article  CAS  Google Scholar 

  • Bougnom, B. P., Mbassa, G. F., Sontsa-Donhoung, A. M., Nemete, A. A. M., Onomo, P. E, & Etoa, F. (2020). Green waste compost with wood ash additive improves physico-chemical and biological parameters of an Oxisol, and soybean (Glycine max L) yield. International journal of Horticulture, Agriculture and Food science (IJHAF), 4(2), 21–28.

  • Brisolara, K. F., & Qi, Y. (2015). Biosolids and sludge management. Water Environment Research, 87, 1147–1166.

    Article  CAS  Google Scholar 

  • Brunetti, G., Polo, A., Garcia-Gil, J. C., Plaza, C., & Senesi, N. (2004). Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biology and Fertility of Soils, 39(5), 320–328.

    Article  Google Scholar 

  • Chau, K. C., & Chan, W. Y. (2000). Planter soils in Hong Kong: I. Soil properties and characterization. Journal of Arboriculture, 24, 59–74.

    Article  Google Scholar 

  • Chen, L., & Liao, H. (2017). Engineering crop nutrient efficiency for sustainable agriculture. Journal of Integrative Plant Biology, 59(10), 710–735.

    Article  Google Scholar 

  • Chen, X. X., Liu, Y. M., Zhao, Q. Y., Cao, W. Q., Chen, X. P., & Zou, C. Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environmental Pollution, 114348.

  • Choi, Y. Y. 2011. International/national standards for heavy metals in food. https://www.govtlab.gov.hk/g/texchange/Stds%20for%20heavy%20metals.pdf. Accessed 6th July 2021.

  • Chow, H., & Pan, M. 2020. Fertilization value of biosolids on nutrient accumulation and environmental risks to agricultural plants. Water, Air, & Soil Pollution, 231(12).

  • Chu, D. (2018). Effects of heavy metals on soil microbial community. IOP Conference Series: Earth and Environmental Science, 113, 012009.

    Google Scholar 

  • Debiase, G., Montemurro, F., Fiore, A., Rotolo, C., Farrag, K., Miccolis, A., & Brunetti, G. (2016). Organic amendment and minimum tillage in winter wheat grown in Mediterranean conditions: Effects on yield performance, soil fertility and environmental impact. European Journal of Agronomy, 75, 149–157.

    Article  Google Scholar 

  • Dou, T., Troesch, S., Petitjean, A., Gábor, P. T., & Esser, D. (2017). Wastewater and rainwater management in urban areas: A role for constructed wetlands. Procedia Environmental Sciences, 37, 535–541.

    Article  Google Scholar 

  • Ewing, L. J., Almgren, H. H., & Culp, R. L. (1978). Effects of thermal treatment of sludge on municipal wastewater treatment costs. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/2–78/073 (NTIS PB285707).

  • Ghosh, B. N., Singh, R. J., & Mishra, P. K. (2015). Retracted chapter: Soil and input management options for increasing nutrient use efficiency. Nutrient Use Efficiency: From Basics to Advances, 17–27.

  • Haynes, R. J. (1986). Uptake and assimilation of mineral nitrogen by plants. In R. J. Haynes (Ed.), Mineral nitrogen in the plant soil system (pp. 303–378). Orlando: Academic Press.

    Google Scholar 

  • Hummel, R. L., C. Cogger, C., Bary, A., & Riley, R. (2014). Marigold and pepper growth in container substrates made from biosolids composted with carbon-rich organic wastes.

  • ISO. (2012). Soil quality-effects of pollutants on earthworms (Eisenia fetida) Part 1: Determination of acute toxicity using artificial soil substrate. ISO 11268–1:2012(E), Annex C. International Organization for Standardization, Geneva, Switzerland.

  • Jim, C., & Chen, S. S. (2003). Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city. China. Landscape and Urban Planning, 65(3), 95–116.

    Article  Google Scholar 

  • Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sust. Energ. Rev., 57, 1126–1140.

    Article  CAS  Google Scholar 

  • Kookana, R. S., Sarmah, A. K., Zwieten, L. V., Krull, E., & Singh, B. (2011). Chapter three—Biochar application to soil: Agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143.

    Article  CAS  Google Scholar 

  • Latare, A., Kumar, O., Singh, S., & Gupta, A. (2014). Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecological Engineering, 69, 17–24.

    Article  Google Scholar 

  • Layman, R. M., Day, S. D., Mitchell, D. K., Chen, Y., Harris, J. R., & Daniels, W. L. (2016). Below ground matters: Urban soil rehabilitation increases tree canopy and speeds establishment. Urban Forestry & Urban Greening, 16, 25–35.

    Article  Google Scholar 

  • Leila, S., Mhameda, M., Hermann, H., Mykola, K., Oliver, W., Christin, M., Elena, O., & Nadia, B. (2017). Fertilization value of municipal sewage sludge for Eucalyptus.

  • Li, Z. U., Zhang, X. M., Wang, D. M., Ma, R. F., Xie, M., & Yang, L. J. 2019. Response of hazelnut hybrids (C. avellana x C. heterophylla) growth to nitrogen fertilization. Eur. J. Hortic. Sci. 84(2), 67–72.

  • López-mosquera, M. E., Moirón, C., & Carral, E. (2000). Use of dairy industry sludge as fertilizer for grasslands in northwest Spain: Heavy metal level in the soil and plant. Resource, Conservation and Recycling, 30, 95–109.

    Article  Google Scholar 

  • Lu, Q., He, Z. L., & Stoffella, P. J. (2012). Land application of biosolids in the USA: A review. Applied and Environmental Soil Science, 2012, 1–11.

    Article  Google Scholar 

  • Ma, X., Zarebanadkouki, M., Kuzyakov, Y., Blagodatskaya, E., Pausch, J., & Razavi, B. S. (2018). Spatial patterns of enzyme activities in the rhizosphere: Effects of root hairs and root radius. Soil Biology and Biochemistry, 118, 69–78.

    Article  CAS  Google Scholar 

  • Marinari, S., Masciandaro, G., Ceccanti, B., & Grego, S. (2000). Influence of organic and mineral fertilisers on soil biological and physical properties. Bioresource Technology, 72(1), 9–17.

    Article  CAS  Google Scholar 

  • Mateo-Sagasta, J., Raschid-Sally, L., & Thebo, A. 2015. Global wastewater and sludge production, treatment and use. Wastewater, 15–38.

  • Moebius-Clune, B. N., Moebius-Clune, D. J., Gugino, B. K., Idowu, O. J., Shindelbeck, R. R., Ristow, A. J., van Es, H. M., Thies, J. E., Shayler, H. A., McBirde, M. B., Kurtz, K. S. M., Wolfe, D. W., & Abawi, G. S. (2017). Comprehensive assessment of soil health: The Cornell framework manual (edition 3). Cornell Univsity.

    Google Scholar 

  • Mohamad, N. H. N., Idilfitri, S., & Thani, S. K. S. O. (2013). Biodiversity by design: The attributes of ornamental plants in urban forest parks. Procedia - Social and Behavioral Sciences, 105, 823–839.

    Article  Google Scholar 

  • Oliveira, F. C., & Mattiazzo, M. E. (2001). Metais pesados em Latossolo tratado com lodo de esgoto e em plantas de cana-de-açúcar. Scientia Agricola, 58, 581–593.

    Article  CAS  Google Scholar 

  • Oram, N. J., van de Voorde, T. F. J., Ouwehand, G. J., Bezemer, T. M., Mommer, L., Jeffery, S., & Groenigen, J. W. V. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment, 191, 92–98.

    Article  CAS  Google Scholar 

  • Pan, M., & Chu, L. M. (2017). Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environmental Pollution, 231, 829–836.

    Article  CAS  Google Scholar 

  • Pan, M., & Chu, L. M. 2018. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation

  • Pandey, C., & Shukla, S. (2006). Effects of composted yard waste on water movement in sandy soil. Compost Science & Utilization, 14(4), 252–259.

    Article  CAS  Google Scholar 

  • Pepper, I., Brooks, J., & Gerba, C. 2019. Land application of organic residuals: Municipal biosolids and animal manures. Environmental and Pollution Science, pp.419–434.

  • Pierce, B. L., Redente, E. F., Barbarick, K. A., Brobst, R. B., & Hegeman, P. (1998). Plant biomass and elemental changes in shrubland forages following biosolids application. Journal of Environment Quality, 27(4), 789.

    Article  CAS  Google Scholar 

  • PlanD. 2020. Planning department. Land utilization in Hong Kong 2019. https://www.pland.gov.hk/pland_en/info_serv/statistic/landu.html. Accessed 5th July 2021.

  • Qi, Y., Wei, W., Chen, C., & Chen, L. 2019. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Global Ecology and Conservation, e00606.

  • Quinones, A., Martínez-Alcantara, B., & Legaz, F. (2007). Influence of irrigation system and fertilization management on seasonal distribution of N in the soil profile and on N-uptake by citrus trees. Agriculture Ecosystems and Environment., 122(3), 399–409.

    Article  CAS  Google Scholar 

  • Reardon, C. L., & Wuest, S. B. (2016). Soil amendments yield persisting effects on the microbial communities—A 7-year study. Applied Soil Ecology, 101, 107–116.

    Article  Google Scholar 

  • Rodríguez-Vila, A., Selwyn-Smith, H., Enunwa, L., Smail, I., Covelo, E. F., & Sizmur, T. (2018). Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature. Environmental Science and Pollution Research, 25(8), 7730–7739.

    Article  Google Scholar 

  • Samah, M. A. A., Hassan, N. S., Hussain, M. R. M., Ibrahim, M. Z., Jan, N. H. M., & Kamarudin, M. K. A. (2020). Determination of heavy metals concentration in food waste compost on root uptake of Capscium annuum L. International of Journal of Advanced Science and Technolgoy, 29(9s), 1612–1627.

    Google Scholar 

  • Sax, M. S., Bassuk, N., van Es, H., & Rakow, D. (2017). Long-term remediation of compacted urban soils by physical fracturing and incorporation of compost. Urban Forestry & Urban Greening, 24, 149–156.

    Article  Google Scholar 

  • Sax, M. S., & Scharenbroch, B. (2017). Assessing alternative organic amendments as horticultural substrates for growing trees in containers. Journal of Environmental Horticulture, 35(2), 66–78.

    Article  CAS  Google Scholar 

  • Scharenbroch, B. C., Meza, E. N., Catania, M., & Fite, K. 2013. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. Journal of Environment Quality, 42(5), 1372.

  • Schulz, H., Dunst, G., & Glaser, B. (2013). Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817–827.

    Article  CAS  Google Scholar 

  • Singh, R. P., & Agrawal, M. (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67(11), 2229–2240.

    Article  CAS  Google Scholar 

  • TPARK. 2018. Environmental protection department. Ash and residue handling. https://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/WFdev_IWMFtech.html. Accessed 5th July 2021.

  • Tsakou, M., Roulia, M., & Christodoulakis, N. S. (2003). Growth parameters and heavy metal accumulation in Poplar tree cultures (Populus euramericana) utilising water and sludge from a sewage treatment plant. Bulletin of Environment Contamination and Toxicology, 71, 330–337.

    Article  CAS  Google Scholar 

  • Teutscherova, N., Vazquez, E., Santana, D., Navas, M., Masaguer, A., & Benito, M. (2017). Influence of pruning waste compost maturity and biochar on carbon dynamics in acid soil: Incubation study. European Journal of Soil Biology, 78, 66–74.

    Article  CAS  Google Scholar 

  • Ulyett, J., Sakrabani, R., Kibblewhite, M., & Hann, M. (2013). Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. European Journal of Soil Science, 65(1), 96–104.

    Article  Google Scholar 

  • United Nations. 2015. Population 2030: Demographic challenges and opportunities for sustainable development planning. Accessed 1st July 2021.

  • Urra, J., Alkorta, I., Lanzén, A., Mijangos, I., & Garbisu, C. 2018. The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Applied Soil Ecology.

  • Veeresh, H., Tripathy, S., Chaudhuri, D., Ghosh, B., Hart, B., & Powell, M. (2003). Changes in physical and chemical properties of three soil types in India as a result of amendment with fly ash and sewage sludge. Environmental Geology, 43(5), 513–520.

    Article  CAS  Google Scholar 

  • Verheijen, F.G.A., Jeffery, S., Bastos, A.C., van der Velde, M., & Diafas, I. 2010. Biochar application to soils—A critical scientific review of effects on soil properties, processes and functions. EUR 24099 EN, Office for the Official Publications of the European Communities, Luxembourg, 149pp.

  • Wang, Q. R., Cui, Y. S., Liu, X. M., Dong, Y. T., & Christie, P. 2003. Soil contamination and plant uptake of heavy metals at polluted sites in China. Journal of Environmental Science and Health Part A - Toxic/ Hazardous Substances & Environmental Engineering, v.38, p.823–838, 2003.

  • Warman, P. R. (1986). The effect of fertilizer, chicken manure and dairy manure on timothy yield, tissue composition and soil fertility. Agricultural Wastes, 18(4), 289–298.

    Article  Google Scholar 

  • White, R., Torri, S., & Corrêa, R. (2011). Biosolids soil application: Agronomic and environmental implications. Applied and Environmental Soil Science, 2011, 1–3.

    Article  Google Scholar 

  • Xing, Y., & Brimblecombe, P. (2019). Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmospheric Environment, 201, 73–83.

    Article  CAS  Google Scholar 

  • Yuan, Y., Chen, H., Yuan, W., Williams, D., Walker, J. T., & Shi, W. (2017). Is biochar-manure co-compost a better solution for soil health improvement and N2O emissions mitigation? Soil Biology and Biochemistry, 113, 14–25.

    Article  CAS  Google Scholar 

  • Zhao, H., Li, X., & Jiang, Y. (2019). Response of nitrogen losses to excessive nitrogen fertilizer application in intensive greenhouse vegetable production. Sustainability, 11(6), 1513.

    Article  Google Scholar 

Download references

Funding

This work was supported by grants from Thei Seed Grant (Grant No. SG1920104) and Research Grants Council of Hong Kong (Grant No. UGC/FDS25/M02/19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, M., Yau, P.C., Lee, K.C. et al. Nutrient Accumulation and Environmental Risks of Biosolids and Different Fertilizers on Horticultural Plants. Water Air Soil Pollut 232, 480 (2021). https://doi.org/10.1007/s11270-021-05424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05424-5

Keywords

Navigation